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1 Appendix

1.1 Appendix A

1.1.1 Equivalence under determinacy

This section considers the case in which the original LRE is determinate, and shows the equi-

valence of the solution obtained using the proposed augmented representation with the one from

the standard solution method described in Sims (2001).

Canonical solution Consider the LRE model in (5) and reported in the following equation

Γ0
k×k

Xt
k×1

= Γ1
k×k

Xt−1
k×1

+ Ψ
k×l

εt
l×1

+ Π
k×p

ηt
p×1

. (1)

The method described in Sims (2001) delivers a solution, if it exists, by following four steps.

First, Sims (2001) shows how to write the model in the form

SZ ′Xt = TZ ′Xt−1 +QΨεt +QΠηt, (2)

where Γ0 = Q′SZ ′ and Γ1 = Q′TZ ′ result from the QZ decomposition of {Γ0,Γ1}, and the k× k
matrices Q and Z are orthonormal, upper triangular and possibly complex. Also, the diagonal

elements of S and T contain the generalized eigenvalues of {Γ0,Γ1}.
Second, given that the QZ decomposition is not unique, Sims’algorithm chooses a decomposition

that orders the equations so that the absolute values of the ratios of the generalized eigenvalues
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are placed in an increasing order, that is

|tjj | / |sjj | ≥ |tii| / |sii| for j > i.

The algorithm then partitions the matrices S, T , Q and Z as

S =

[
S11 S12

0 S22

]
, T =

[
T11 T12

0 T22

]
, Z ′ =

[
Z1

Z2

]
, Q =

[
Q1

Q2

]
,

where the first block corresponds to the system of equations for which |tjj | / |sjj | ≤ 1 and the

second block groups the equations which are characterized by explosive roots, |tjj | / |sjj | > 1 .

The third step imposes conditions on the second, explosive block to guarantee the existence of

at least one bounded solution. Defining the transformed variables

ξt ≡ Z ′Xt =


ξ1,t

(k−n)×1

ξ2,t
n×1

 ,
where n is the number of explosive roots, and the transformed parameters

Ψ̃ ≡ Q′Ψ, and Π̃ ≡ Q′Π,

the second block can be written as

ξ2,t = S−122 T22ξ2,t−1 + S−122 (Ψ̃2εt + Π̃2ηt).

As this system of equations contains the explosive roots of the original system, then a bounded

solution, if it exists, will set

ξ2,0
n×1

= 0 (3)

Ψ̃2
n×`

εt
`×1

+ Π̃2
n×p

ηt
p×1

= 0, (4)

where n also denotes the number of equations in (4). A necessary condition for the existence of a

solution requires that the number of unstable roots (n) equals the number of expectational vari-

ables (p). In this section, we are considering the solution under determinacy, and this guarantees

that there are no degrees of indeterminacy m∗(θ) = 0. The suffi cient condition then requires

that the columns of the matrix Π̃2 are linearly independent so that there is at least one bounded

solution. In that case, the matrix Π̃2 is a square, non-singular matrix and equation (4) imposes
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linear restrictions on the forecast errors, ηt, as a function of the fundamental shocks, εt,

ηt = −Π̃−12 Ψ̃2εt. (5)

The fourth and last step finds the solution for the endogenous variables, Xt, by combining the

restrictions in (3) and (5) with the system of stable equations in the first block,

ξ1,t = S−111 T11ξ1,t−1 + S−111 (Ψ̃1εt + Π̃1ηt)

= S−111 T11ξ1,t−1 + S−111

(
Ψ̃1 − Π̃1Π̃

−1
2 Ψ̃2

)
εt (6)

Using the algorithm by Sims (2001), we can describe the solution under determinacy of the LRE

model in (1) with equations (3), (5), and (6).

Augmented representation We now consider the methodology proposed in this paper, and

we augment the LRE model in (1) with the following system of m equations

ωt = Φωt−1 + νt − ηf,t, Φ ≡


1
α1

0
. . .

0 1
αm


where Φ is a m×m diagonal matrix. As the original model in (1) is determinate, then we assume

that all the diagonal elements αi belong to the interval [1, 2]. Therefore, we are appending a

system of stable equations, and we show that the solution for the endogenous variables, Xt, is

equivalent to the one found in Subsection 1.1.1. Defining the augmented vector of endogen-

ous variables, X̂t ≡ (Xt, ωt)
′ and the augmented vector of exogenous shocks ε̂t ≡ (εt, νt)

′, the

representation that we propose takes the form

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt, (7)

where

Γ̂0 ≡
[

Γ0 0

0 I

]
, Γ̂1 ≡

[
Γ1 0

0 Φ

]
, Ψ̂ ≡

[
Ψ 0

0 I

]
, Π̂ ≡

[
Πn Πf

0 −I

]
,

and without loss of generality the matrix Π is partitioned as Π = [Πn Πf ], where the matrices

Πn and Πf are respectively of dimension k × (p−m) and k ×m.
We can find a solution to the augmented representation in (7) by using Sims’algorithm. Sim-
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ilarly to the previous section, we follow the four steps which describe the algorithm. First, the

solution algorithm performs the QZ decomposition of the matrices {Γ̂0, Γ̂1} and the augmented
representation takes the form

ŜẐ ′X̂t = T̂ Ẑ ′X̂t−1 + Q̂Ψ̂ε̂t + Q̂Π̂ηt, (8)

where Γ̂0 = Q̂′ŜẐ ′ and Γ̂1 = Q̂′T̂ Ẑ ′ result from the QZ decomposition of {Γ̂0, Γ̂1}, and

Ŝ =

S11 0 S12

0 I 0

0 0 S22

 , T̂ =

T11 0 T12

0 Φ 0

0 0 T22

 , ẐT =

Z1 0

0 I

Z2 0

 , Q̂ =

Q1 0

0 I

Q2 0

 .
Importantly, note that the inner matrices of {Ŝ, T̂ , Ẑ, Q̂} are the same as those which define the
matrices {S, T, Z,Q} found in the previous section using the canonical solution method.
Second, the algorithm chooses a QZ decomposition which groups the equations in a stable and

an explosive block. Because this section assumes that the original model is determinate and that

the diagonal elements of the matrix Φ are within the unit circle, the explosive block corresponds

to the third system of equations in (8) which is characterized by explosive roots. Recalling the

definition of the matrices Ψ̂ and Π̂, the system of equations in the third block is

ξ2,t = S−122 T22ξ2,t−1 + S−122 (Ψ̃2εt + Π̃2ηt). (9)

The third step imposes conditions to guarantee the existence of a bounded solution. However,

the explosive block in (9) is identical to the system of equations found in the previous section.

Therefore, the algorithm imposes the same restrictions to guarantee the existence of a bounded

solution, that is

ξ2,0 = 0 (10)

and as found earlier

ηt = −Π̃−12 Ψ̃2εt. (11)

Finally, the last step combines these restrictions with the system of equations in the stable block

which corresponds to the first and second systems of equations in (8),

ξ1,t = S−111 T11ξ1,t−1 + S−111

(
Ψ̃1 − Π̃1Π̃

−1
2 Ψ̃2

)
εt, (12)

ωt = Φωt−1 + νt − ηf,t. (13)

Recalling that ξt ≡ Z ′Xt, the solution in (10)∼(13) obtained for the augmented representation
of the LRE model delivers the same solution for the endogenous variables of interest, Xt, found
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in the previous section and defined in equations (3), (5), and (6).

1.1.2 Equivalence under indeterminacy

This section shows the equivalence of the solutions obtained for a LREmodel under indeterminacy

using the proposed augmented representation and the methodology of Lubik and Schorfheide

(2003, 2004).

Lubik and Schorfheide (2003) As in Subsection 1.1.1, we consider the LRE model in (1)

and reported below as (14)

Γ0Xt = Γ1Xt−1 + Ψεt + Πηt. (14)

In this section we assume that the model is indeterminate, and we present the method used

by Lubik and Schorfheide (2003). The authors implement the first two steps of the algorithm

by Sims (2001) and described in Subsection 1.1.1.1 They proceed by first applying the QZ

decomposition to the LRE model in (14) and then ordering the resulting system of equations in

a stable and an explosive block as defined in equation (2). However, their approach differs in

the third step when the algorithm imposes restrictions to guarantee the existence of a bounded

solution. In particular, the restrictions in (3) and (4) reported below as (15) and (16) require

that

ξ2,0
n×1

= 0, (15)

Ψ̃2
n×`

εt
`×1

+ Π̃2
n×p

ηt
p×1

= 0. (16)

Nevertheless, it is clear that the system of equation in (16) is indeterminate as the number

of forecast errors exceeds the number of explosive roots (p > n). Equivalently, there are less

equations (n) than the number of variables to solve for (p). To characterize the full set of

solutions to equation (16), Lubik and Schorfheide (2003) decompose the matrix Π̃2 using the

following singular value decomposition

Π̃2
n×p

≡ U
n×n

[
D11
n×n

0
n×m

]
V ′
p×p

,

where m represents the degrees of indeterminacy. Given the partition V
p×p
≡
[
V1
p×n

V2
p×m

]
,

1 It is relevant to mention that in this section the matrices obtained from the QZ decomposition and the ordering
of the equations into a stable and an explosive block differ from those in Subsection 1.1.1 both in terms of their
dimensionality and the elements constituing them. However, we opted to use the same notation for simplicity.
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equation (16) can be written as

D−111
n×n

U ′
n×n

Ψ̃2
n×`

εt
`×1

+ V ′1
n×p

ηt
p×1

= 0. (17)

Given that the system is indeterminate, Lubik and Schorfheide (2003) append additional m

equations,

M̃
m×`

εt
`×1

+ Mζ
m×m

ζt
m×1

= V ′2
m×p

ηt
p×1

. (18)

The m × 1 vector ζt is a set of sunspot shocks that is assumed to have mean zero, covariance

matrix Ωζζ and to be uncorrelated with the fundamental shocks, εt, that is

E [ζt] = 0, E
[
ζtε
′
t

]
= 0, E

[
ζtζ
′
t

]
= Ωζζ .

The matrix M̃ captures the correlation of the forecast errors, ηt, with fundamentals, εt, and Lubik

and Schorfheide (2003) choose the normalization Mζ = Im. The reason to append the system of

equations in (18) to the equations in (17) is to exploit the properties of the orthonormal matrix

V . Premultiplying the system by the matrix V and recalling that V ∗ V ′ = I, the expectational

errors can be written as a function of the fundamental shocks, εt, and the sunspot shocks, ζt,

ηt
p×1

=

(
−V1
p×n

D−111
n×n

U ′1
n×n

Ψ̃2
n×`

+ V2
p×m

M̃
m×`

)
εt
`×1

+ V2
p×m

ζt
m×1

.

More compactly,

ηt
p×1

=

(
V1
p×n

N
n×`

+ V2
p×m

M̃
m×`

)
εt
`×1

+ V2
p×m

ζt
m×1

, (19)

where

N
n×`
≡ −D−111

n×n
U ′1
n×n

Ψ̃2.
n×`

is a function of the parameters of the model. Given the restriction in (15) and (19), the fourth

step in the algorithm combines these equations with the system of stable equations in the first

block as in Subsection 1.1.1,

ξ1,t = S−111 T11ξ1,t−1 + S−111 (Ψ̃1εt + Π̃1ηt)

= S−111 T11ξ1,t−1 + S−111

(
Ψ̃1 + Π̃1V1N + Π̃1V2M̃

)
εt + S−111

(
Π̃1V2

)
ζt. (20)

Using the method in Lubik and Schorfheide (2003), we can describe the solution for the original

LRE model under indeterminacy with equations (15), (19) and (20).
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Augmented representation We now consider the augmented representation as in (7) and

reported below as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt, (21)

where X̂t ≡ (Xt, ωt)
′, ε̂t ≡ (εt, νt)

′ and

Γ̂0 ≡
[

Γ0 0

0 I

]
, Γ̂1 ≡

[
Γ1 0

0 Φ

]
, Ψ̂ ≡

[
Ψ 0

0 I

]
, Π̂ ≡

[
Πn Πf

0 −I

]
.

where the matrix Π is partitioned as Π = [Πn Πf ] without loss of generality.

The novelty of our approach is that, given our representation, we can easily obtain the solution by

using Sims’algorithm even when the original LRE is assumed to be indeterminate. It is enough

to assume that the auxiliary processes ωt are characterized by explosive roots, or equivalently

that the diagonal elements of the matrix Φ are outside the unit circle. This approach guarantees

that the Blanchard-Kahn condition for the augmented representation is satisfied and, given

the analytic form that we propose for the auxiliary processes, we show that the solution for

the endogenous variables of interest, Xt, is equivalent to the method of Lubik and Schorfheide

(2003).

To show this result, we simply apply the four steps of the algorithm described in Sims (2001) to

the proposed augmented representation. First, the QZ decomposition of (21) takes the form

ŜẐ ′X̂t = T̂ Ẑ ′X̂t−1 + Q̂Ψ̂ε̂t + Q̂Π̂ηt, (22)

where Γ̂0 = Q̂′ŜẐ ′ and Γ̂1 = Q̂′T̂ Ẑ ′ result from the QZ decomposition2 of {Γ̂0, Γ̂1} and

Ŝ =

S11 S12 0

0 S22 0

0 0 I

 , T̂ =

T11 T12 0

0 T22 0

0 0 Φ

 , ẐT =

Z1 0

Z2 0

0 I

 , Q̂ =

Q1 0

Q2 0

0 I

 . (23)
Note that in the expression above the auxiliary matrix Φ is in the lower (explosive) block because

of our simplifying assumption that m∗ (θ) = m. When m∗ (θ) < m, part of the matrix Φ would

belong in the stable block. As mentioned above, we made this simplifying assumption without

loss of generality and only to simplify the exposition.

Second, the QZ decomposition chosen by the algorithm groups the explosive dynamics of the

model in the second and third system of equations in (22), which are reported below as (24)

2Note that the inner matrices of {Ŝ, T̂ , ẐT , Q̂} are the same as those which define the matrices {S, T, ZT , Q}
found from the QZ decomposition using the methodology of Lubik and Schorfheide (2003).
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[
S22 0

0 I

][
ξ2

ωt

]
=

[
T22 0

0 Φ

][
ξ2,t−1
ωt−1

]
+

[
Q2 0

0 I

](
Ψ̂ε̂t + Π̂ηt

)
. (24)

In the third step, the following restrictions are imposed,

ξ2,0
n×1

= 0, (25)

ω0
m×1

= 0, (26)[
Q2 0

0 I

](
Ψ̂ε̂t + Π̂ηt

)
= 0. (27)

Recalling the definition of Ψ̂ and Π̂ in (21), then equation (27) can be written as[
Ψ̃2 0

0 I

]
︸ ︷︷ ︸
p×(`+m)

ε̂t
(`+m)×1

+

[
Π̃n,2 Π̃f,2

0 −I

]
︸ ︷︷ ︸

p×p

ηt
p×1

= 0, (28)

where Ψ̃ ≡ Q′Ψ and Π̃ ≡ Q′Π. Equation (28) shows transparently how the explosive auxiliary

process that we append in our augmented representation helps to solve the original LRE model

under indeterminacy. The system of equations in (28) is determinate, as the number of equations

defined by the explosive roots of the system equals the number of expectational errors of the

model. Thus, the necessary condition for the existence of a bounded solution for the augmented

representation is satisfied. Assuming that the columns of the matrix associated with the vector

of non-fundamental shocks, ηt, are linearly independent, we can impose linear restrictions on the

forecast errors as a function of the augmented vector of exogenous shocks ε̂t ≡ (εt, νt)
′,

ηt = −
[

Π̃−1n,2Ψ̃2 Π̃−1n,2Π̃f,2

0 −I

]
ε̂t.

More compactly,

ηt = C1εt + C2νt, (29)

where C1 ≡ −
[

Π̃−1n,2Ψ̃2

0

]
and C2 ≡ −

[
Π̃−1n,2Π̃f,2

−I

]
are a function of the structural parameters of

the model.

The last step of Sims’algorithm combines the restrictions in (25), (26) and (29) with the sta-
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tionary block derived from the QZ decomposition in (22),

ξ1,t = S−111 T11ξ1,t−1 + S−111 (Ψ̃1εt + Π̃1ηt)

= S−111 T11ξ1,t−1 + S−111

(
Ψ̃1 + Π̃1C1

)
εt + S−111

(
Π̃1C2

)
νt. (30)

1.1.3 Mapping of normalization in Lubik and Schorfheide (2004) to Bianchi-Nicolò

We prove the equivalence between the parametrization of the Lubik-Schorfheide indeterminate

equilibrium θLS ∈ ΘLS and the Bianchi-Nicolò equilibrium parametrized by θBN ∈ ΘBN . In

particular, we show that there is a unique mapping between the linear restrictions imposed in each

of the two methodologies on the forecast errors to guarantee the existence of at least a bounded

solution. As shown in Subsection 1.1.2, the method by Lubik and Schorfheide (2003) imposes the

following restrictions on the non-fundamental shocks, ηt, as a function of the exogenous shocks,

εt, and the sunspot shocks introduced in their specification, ζt,

ηt
p×1

=

 V1
p×n

N
n×`

+ V2
p×m

M̃
m×`
m×`

 εt
`×1

+ V2
p×m

ζt
m×1

. (31)

Using the methodology proposed in this paper, Subsection 1.1.2 shows that the restrictions on the

non-fundamental shocks, ηt, as a function of the exogenous shocks, εt, and the sunspot shocks,

vt, are

ηt
p×1

= C1
p×`

εt
`×1

+ C2
p×m

νt
m×1

, (32)

where

C1 ≡ −
[

Π̃−1n,2Ψ̃2

0

]
and C2 ≡ −

[
Π̃−1n,2Π̃f,2

−I

]
.

Post-multiplying equation (31) and (32) by ε′t and taking expectations on both sides,

Ωηε
p×l

= V1
p×n

N
n×`

Ωεε
`×l

+ V2
p×m

M̃
m×`

Ωεε
`×l

,

Ωηε
p×l

= C1
p×`

Ωεε
`×l

+ C2
p×m

Ωνε
m×l

Pre-multiplying by V ′2 and equating the equations,

M̃
m×`

Ωεε
`×l

=

(
V ′2
m×p

C1
p×`
− V ′2
m×p

V1
p×n

N
n×`

)
Ωεε
`×l

+ V ′2
m×p

C2
p×m

Ωνε
m×l

. (33)
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Using the properties of the vec operator, the following result holds

vec(M̃)
(m×`)×1

= (Ωεε ⊗ Im)−1

(m×`)×(m×`)

[[
Il ⊗

(
V ′2C1 − V ′2V1N

)]
(m×`)×`2

vec (Ωεε)
`2×1

+
(
Il ⊗ V ′2C2

)
(m×`)×(m×`)

vec (Ωνε)
(m×`)×1

]
. (34)

Equation (34) is the first relevant equation to show the mapping between the representation in

Lubik and Schorfheide (2003) and our representation. For a given variance-covariance matrix

of the exogenous shocks, Ωεε, that is common between the two representations, equation (34)

tells us that the covariance structure, Ωνε, of the sunspot shock in our representation with the

exogenous shocks has a unique mapping to the matrix, M̃ , in Lubik and Schorfheide (2003).

Clearly, equation (33) can also be used to derive the mapping from their representation to our

method.

We now show how to derive the mapping between the variance-covariance matrix, Ωνν , of the

sunspot shocks in our representation to the variance-covariance matrix, Ωζζ , of the sunspot shocks

in Lubik and Schorfheide (2003). Considering again equation (31) and (32), we post-multiply by

ζ ′t and take expectations on both sides,

Ωηζ
p×m

= V2
p×m

Ωζζ
m×m

,

Ωηζ
p×m

= C2
p×m

Ωνζ
m×m

Pre-multiplying both equations by V ′2 and equating them,

Ωζζ
m×m

= Ωζν
m×m

(
V ′2C2

)′
m×m

. (35)

Finally, to obtain an expression for Ωζν , we post-multiply equation (31) and (32) by ν ′t and

taking expectations

Ωην
p×m

=

(
V1
p×n

N
n×`

+ V2
p×m

M̃
m×`

)
Ωεν
`×m

+ V2
p×m

Ωζν
m×m

,

Ωην
p×m

= C1
p×`

Ωεν
`×m

+ C2
p×m

Ωνν
m×m

Pre-multiplying both equations by V ′2 and solving for Ωζν ,

Ωζν
m×m

=

(
V ′2
m×p

C1
p×`
− V ′2
m×p

V1
p×n

N
n×`
− M̃
m×`

)
Ωεν
`×m

+
(
V ′2C2

)
m×m

Ωνν
m×m

. (36)
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Post-multiplying (36) by (V ′2C2)
′

m×m
and using (35), then

Ωζζ
m×m

=

(
V ′2
m×p

C1
p×`
− V ′2
m×p

V1
p×n

N
n×`
− M̃
m×`

)
Ωεν
`×m

(
V ′2C2

)′
m×m

+
(
V ′2C2

)
m×m

Ωνν
m×m

(
V ′2C2

)′
m×m

. (37)

Therefore, equation (37) defines the mapping between the variance-covariance matrix, Ωνν , of

the sunspot shocks in our representation to the variance-covariance matrix, Ωζζ , of the sunspot

shocks in Lubik and Schorfheide (2003). Together with equation (34), we show that this equation

defines the one-to-one mapping between the parametrization in Lubik and Schorfheide {Θ,ΘLS}
and the parametrization in Bianchi-Nicolò {Θ,ΘBN}.
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1.2 Appendix B

Table 1 reports the posterior distribution of the model parameters for each of the three specific-

ations that are possible when adopting our method to solve for the model of Galí (forthcoming)

under two degrees of indeterminacy. For each specification, the log-posterior mode is −33.1

and the table shows that the estimates are equivalent up to a transformation of the correlations

between the exogenous shocks and the forecast errors included in the auxiliary process.3

{ν1=νπ,ν2 = νy} {ν1=νπ,ν2 = νb} {ν1=νy,ν2 = νb}
Mean 90% prob. int. Mean 90% prob. int. Mean 90% prob. int.

100(λ−1l −1) 0.028 [0.018,0.038] 0.031 [0.018,0.043] 0.030 [0.012,0.042]
κ 0.042 [0.034,0.050] 0.039 [0.031,0.047] 0.039 [0.031,0.047]
g 0.48 [0.46,0.50] 0.49 [0.46,0.51] 0.48 [0.46,0.51]
π∗ 0.89 [0.44,1.36] 0.90 [0.41,1.36] 0.89 [0.40,1.34]
φπ 0.29 [0.14,0.43] 0.34 [0.15,0.56] 0.26 [0.12,0.39]
φq 0.02 [0.01,0.04] 0.04 [0.01,0.07] 0.03 [0.01,0.04]
ρi 0.50 [0.27,0.74] 0.50 [0.25,0.77] 0.48 [0.23,0.73]
σq 0.97 [0.45,1.51] 1.21 [0.45,2.06] 1.01 [0.46,1.58]
σs 0.11 [0.09,0.12] 0.11 [0.09,0.14] 0.11 [0.09,0.13]
σi 0.11 [0.09,0.14] 0.12 [0.09,0.15] 0.12 [0.09,0.14]
ρq 0.71 [0.55,0.87] 0.74 [0.57,0.91] 0.72 [0.56,0.87]
ρs 0.89 [0.84,0.94] 0.88 [0.81,0.95] 0.88 [0.83,0.94]
σν1 0.30 [0.25,0.34] 0.30 [0.25,0.34] 0.70 [0.61,0.79]
σν2 11.14 [5.48,16.55] 0.71 [0.61,0.80] 10.10 [4.83,15.39]
ϕν1,i -0.54 [-0.75,-0.31] -0.59 [-0.80,-0.39] -0.38 [-0.65,-0.11]
ϕν1,q 0.18 [-0.27,0.60] 0.21 [-0.23,0.62] 0.11 [-0.43,0.66]
ϕν1,s 0.58 [0.46,0.72] 0.54 [0.38,-0.69] -0.54 [-0.70,-0.40]
ϕν2,i -0.72 [-0.88,-0.54] -0.39 [-0.71,-0.10] -0.76 [-0.93,-0.61]
ϕν2,q -0.06 [-0.42,0.29] 0.05 [-0.44,0.56] -0.08 [-0.46,0.26]
ϕν2,s -0.51 [-0.71,-0.32] -0.55 [-0.72,-0.38] -0.45 [-0.65,-0.25]
ϕν1,ν2 0.28 [0.03,0.54] 0.23 [0.05,0.41] 0.63 [0.44,0.81]

Table 1: Posterior distribution of model parameters under 2-degree indeterminacy.

Below, Table 2 reports the Raftery-Lewis diagnostics for each parameter chain of the model of

Galí (forthcoming).

3To obtain the estimates in Table 1, we use a uniform distribution over the interval (0, 20) for the standard
deviation of the sunspot shocks. This guarantees that the posterior distribution of the sunspot shock νb is not at
the boundary of the range specified for the uniform prior.
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Variable Thin Burn Total (N) Nmin I-stat
100(λl

−1 − 1) 1 2 345 322 1.071
κ 1 2 304 322 0.944
g 1 2 331 322 1.028
π∗ 1 3 293 322 0.910
φπ 1 2 304 322 0.944
φq 1 2 317 322 0.984
ρi 1 3 361 322 1.121
σq 1 2 331 322 1.028
σs 1 3 376 322 1.168
σi 1 2 345 322 1.071
ρq 1 3 376 322 1.168
ρs 1 2 331 322 1.028
σνπ 1 3 340 322 1.056
σνy 1 2 345 322 1.071
ϕνπ ,i 1 3 392 322 1.217
ϕνπ ,q 1 3 376 322 1.168
ϕνπ ,s 1 4 410 322 1.273
ϕνy ,i 1 3 376 322 1.168

ϕνy ,q 1 4 410 322 1.273

ϕνy ,s 1 3 385 322 1.196

ϕνπ ,νy 1 13 985 322 3.059

Table 2: Raftery-Lewis Diagnostics for each parameter chain in Galí (forthcoming).

The table reports the Raftery-Lewis diagnostics for each parameter chain. We consider the 5th quantile,
q = 0.05, with an accuracy r = 0.02 and a probability s = 0.9 of obtaining an estimate in the interval
(q − r, q + r). The diagnostics reports the suggested number of burn-in iterations ("Burn"), the sug-
gested number of iterations ("Total (N)"), the suggesed minimum number of iterations based on zero
autocorrelation ("Nmin") and the dependence factor ("I-stat"). The dependence factor is computed as
I-stat = (Burn + Total)/Nmin, and interpreted as the proportional increase in the number of iterations
attributable to autocorrelation.
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1.3 Appendix C

Mixture Random walk
Thin Burn Total (N) Nmin I-stat Thin Burn Total (N) Nmin I-stat

ψπ 2 5 2981 1286 2.318 4 14 5790 1286 4.502
ψy 1 2 1299 1286 1.010 1 1 1287 1286 1.000
ρR 1 3 1545 1286 1.201 1 3 1432 1286 1.113
τ 1 3 1564 1286 1.216 1 3 1538 1286 1.196
κ 2 7 3037 1286 2.362 1 4 1654 1286 1.286
ρg 2 7 2967 1286 2.307 4 15 6287 1286 4.889
ρz 1 2 1332 1286 1.036 1 2 1321 1286 1.027
r∗ 1 3 1468 1286 1.141 1 3 1474 1286 1.146
π∗ 1 3 1500 1286 1.166 3 11 4136 1286 3.216
σR 1 2 1366 1286 1.062 1 3 1526 1286 1.187
σg 1 2 1372 1286 1.067 1 3 1384 1286 1.076
σz 1 2 1304 1286 1.014 1 1 1285 1286 0.999
ρgz 2 7 3051 1286 2.372 2 8 2972 1286 2.311
ση 2 6 2758 1286 2.145 1 3 1390 1286 1.081

Table 3: Raftery-Lewis Diagnostics for each parameter chain in Lubik and Schorfheide (2004).

The table reports the Raftery-Lewis diagnostics for each parameter chain using the hybrid ("Mixture")
and the random walk algorithm ("Random walk"). We consider the 5th quantile, q = 0.05, with an
accuracy r = 0.01 and a probability s = 0.9 of obtaining an estimate in the interval (q − r, q + r).
The diagnostics reports the suggested number of burn-in iterations ("Burn"), the suggested number
of iterations ("Total (N)"), the suggesed minimum number of iterations based on zero autocorrelation
("Nmin") and the dependence factor ("I-stat"). The dependence factor is computed as I-stat = (Burn
+ Total)/Nmin, and interpreted as the proportional increase in the number of iterations attributable to
autocorrelation.
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1.4 Appendix D

In this section, we consider the case that a researcher estimates a LRE model using Bayesian

techniques and a conventional Metropolis-Hastings algorithm in Dynare. Let us consider the

following LRE model

Γ0(θ)Xt = Γ1(θ)Xt−1 + Ψ(θ)εt + Π(θ)ηt, (38)

with a maximum degree of indeterminacy denoted by m.4 As explained in detail in Section 3, the

proposed methodology appends to the original LRE model the following system of m equations

ωt = Φωt−1 + νt − ηf,t, (39)

where Φ is a diagonal matrix whose entries are {1/α1, .., 1/αm}. Denoting the newly defined
vector of endogenous variables X̂t ≡ (Xt, ωt)

′ and the newly defined vector of exogenous shocks

ε̂t ≡ (εt, νt)
′, the resulting augmented LRE model can be written as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt. (40)

Auxiliary autoregressive parameters. As a first step, we discuss how to handle the vector
of additional autoregressive parameters, {αi}mi=1, introduced under our methodology. We can
distinguish three cases:

1. When the threshold for the different regions of determinacy is known analytically, then αi
can be expressed as a function of the other parameters. In this case, there is no need to

specify a prior on αi and the prior probability of (in)determinacy is given by the prior on

the parameter vector θ.

2. When the threshold is unknown and the researcher writes her own code, she can start with

all the roots inside the unit circle for α at each draw of θ and then flip the appropriate

number of elements in the vector α. This case coincides with the approach that we adopt

in Section 5 to estimate the model of Galí (forthcoming) for which there is no need to

specify a prior on αi and the prior probability of indeterminacy depends on the prior

on the parameter vector θ. In other words, in this case αi is treated as an unknown

transformation of the structural parameters that guarantees that a solution, if it exists,

can be found independently of the degree of indeterminacy.

3. When the threshold is unknown and the researcher wants to use standard estimation pack-

ages such as Dynare, there are two options. First, the researcher estimates the model

4We refer the reader to Section 3 for definitions and notation.
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separately for different degrees of indeterminacy. This is the simplest approach and we de-

scribe it more in detail below. Second, the researcher estimates the model over the whole

parameter space. In this case, the researcher can complement the Dynare codes with a

function that pins down the degrees of indeterminacy. This can be done writing a function

that, starting with all {αi}mi=1 inside the unit circle, solves the model and keeps flipping
{αi}mi=1 until the augmented state space returns determinacy. In this case, the {αi}mi=1 are
still treated as a transformation of the structural parameters of the model. Alternatively,

the researcher can decide to treat {αi}mi=1 as additional parameters. In this case, the re-
searcher should choose priors that are symmetric with respect to the various determinacy

regions and orthogonal with respect to the priors on the other parameters. The researcher

could use a uniform distribution over the interval [0.5, 1.5] or any symmetric interval around

1 as a prior distribution. The assumptions that the priors are symmetric around 1 and

orthogonal with respect to the structural parameters imply that the a-priori probabilities of

the different determinacy regions only depend on the priors on the structural parameters of

the model. The posterior distribution of the parameters is not affected by treating {αi}mi=1
as additional parameters. However, the priors on {αi}mi=1 would have an impact on the
marginal data density computed by Dynare. The marginal data density can be corrected

ex-post by taking into account that uniform priors on {αi}mi=1 simply rescale the joint prior
on the model parameters. Alternatively, a researcher could implement a simple modifica-

tion of the code used to compute Geweke (1999)’s modified harmonic mean estimator to

remove the impact of the priors on αi. For example, {αi}mi=1 could be weighted using their
own prior when computing the modified harmonic mean estimator.

Priors for the correlations between the sunspot and fundamental shocks. In Subsection
2.2, we discuss in detail the economic rationale for how to construct a baseline solution using

our methodology. Therefore, it seems natural to center the prior distribution for the correlations

on zero, the value associated with the “baseline solution.” However, as carefully explained in

Subsection 2.2, it is important to stress that under the baseline solution, the choice of which

forecast errors to include in the auxiliary processes matters for the solution when the correlations

are restricted to zero. At the same time, as explained in Section 3, a set of correlations under the

representation that includes a given subset of non-fundamental shocks has a unique mapping to

different values of the correlations in the representation with another subset of non-fundamental

disturbances, and vice versa. Therefore, in order for the alternative representations to deliver

the same fit to the data, a researcher has to leave the correlations unrestricted. One simple

option is to set a uniform prior distributions over the interval (−1, 1) for the correlations of the

sunspot shocks. As shown for the estimation of the model of Galí (forthcoming) in Section 5,

this approach guarantees that the fit of the model does not depend on which non-fundamental
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shock is included in the auxiliary processes. Of course, if a researcher has reasons to believe that

one baseline solution is more meaningful than the other, she can choose the priors accordingly.

Lubik and Schorfheide (2004) center the prior distribution for the additional parameters intro-

duced in their representation to values that minimize the distance between the impulse responses

of the model under indeterminacy and determinacy evaluated at the boundary of the region of

determinacy. While our approach and intuition differ, our theoretical results show the equival-

ence between the two representations in Section 3. Therefore, the priors for the correlations

between sunspot shocks and fundamental shocks could also be specified in a way to replicate the

approach of Lubik and Schorfheide (2004). Specifically, we could center the prior on the auxiliary

parameters as in Lubik and Schorfheide (2004) and then map those values into correlations in our

approach that would deliver the same fit of the model to the data. However, our suggestion to

choose a flat prior such as a uniform distribution considers a-priori the mapped parameterization

suggested by Lubik and Schorfheide (2004) as equally likely with respect to the continuum of

indeterminate equilibria.

Model comparison. A researcher might be interested in comparing the fit of the model under
determinacy and under indeterminacy. Note that, while under indeterminacy the volatility of the

sunspot shocks and their correlations with the exogenous shocks are estimated, those parameters

should be restricted to zero (or any other constant) under determinacy. Model comparison can

then be conducted by using standard techniques, such as the harmonic mean estimator proposed

by Geweke (1999).
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