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A.1 Notes on computation

Our estimation procedure follows the expectation maximization algorithm de-
scribed in Herwartz and Lütkepohl (2014) and is based on the following concen-
trated out log-likelihood function in the maximization step:

L(D,Λm) =
1

2

M∑
m=1

[
Tmlog(det(Σ̃m)) + tr

(
(Σ̃m)

−1

T∑
t=1

ξmt|Tutu
′
t

)]
,

where ξmt|T , t = 1, . . . , T are the model smoothed probabilities with Tm =
∑T

t=1 ξmt|T .
All estimations in this paper use the statistical software R4.0.5. For maximiza-

tion of the log-likelihood function the R-package ‘nloptr’ provides the optimization
routine ‘slsqp’, a sequential (least-squares) quadratic programming algorithm for
nonlinearly constrained, gradient-based optimization. This algorithm supports
equality constraints and inequality constraints. The former are needed to imple-
ment zero restrictions in our model setup on the structural impact matrix. The
latter are used to impose a lower bound of 0.001 on the diagonal elements of Λm

for m = 1, . . . ,M to avoid singularity of the covariance matrix.
The zero restrictions in columns (K + 1) of the autoregressive coefficient ma-

trices Γp for p = 1, . . . , P of model 8 are implemented using restricted ordinary
least squares. The restrictions are updated at the end of each maximization step
of the EM algorithm.

To generate starting values for the structural parameters D and Λm for m =
2, . . . ,M for the estimation algorithm we follow Herwartz and Lütkepohl (2014)
with two exceptions. First, we choose starting values of D = (T−1

∑T
t=1 ûtû

′
t)

1/2Ω
with ût being the estimated reduced form residuals of the respective model and
Ω being a random orthogonal matrix. Choosing an orthogonal matrix instead of
adding a matrix of small random numbers as suggested by Herwartz and Lütkepohl
(2014) covers a wider range of the parameter space of possible starting values
for D. Second, starting values of Λm for m = 2, . . . ,M are chosen as Λm =
diag(0.5k, 2.0k, 3.5k, 5.0k)m−1 with k = 1, . . . , 10. For each k we draw 100 random
orthogonal matrices Ω as starting values for D. Thus, the total number of distinct
initial parameters for each model amounts to 1000. We check convergence of the
estimation algorithm using the relative changes of the log-likelihood function for of
each estimated model and choose the model that maximizes the likelihood among
all converged models.

In the Monte Carlo study we rely on one draw of starting values for D to limit
the computational burden. To make up for choosing only one initial parameter for
D we set starting values for Λ = (0.5, 2, 3.5, 5) to start the estimation algorithm
in the proximity of the true parameter values. We did not encounter convergence
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problems of the estimation algorithm in the simulation study. The simulations
were conducted with 50 cores (Intel Xeon Skylake 6130 processors) on the high
performance computing server at Freie Universität Berlin.

A.2 Supplementary results of Monte Carlo study

This section contains supplementary material to the Monte Carlo study carried
out in Section 3 of the paper. All relevant information is in the captions and notes
of the respective tables.

A.2.1 Supplementary results of baseline simulation

Table A.1: Relative rejection frequencies at nominal significance level of 5% of
LR-tests on exogeneity of instrument.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.07 . . . .
(0.35,0.15) 0.07 0.09 0.40 . .
(0.72,0.30) 0.08 0.08 0.32 0.64 0.89
(1.00,0.40) 0.08 0.08 0.29 0.57 0.81

T = 500

(0,0) 0.06 . . . .
(0.35,0.15) 0.05 0.14 0.76 . .
(0.72,0.30) 0.05 0.13 0.66 0.97 1.00
(1.00,0.40) 0.06 0.11 0.57 0.92 1.00

Notes: Based on 500 replications of simulation experiment. Dots (.) denote combinations of
values for β1 and β2 that produce lower correlations between the instrument st and the target
structural shock of interest (εrt ) than between the instrument st and the endogenous structural
shock (εzt ). These cases are not taken into account in the analysis.
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Table A.2: Relative rejection frequencies at nominal significance level of 10% of
LR-tests for relevance of instrument for sample sizes T = 200 and T = 500.

Sample
Size

Relevance
(β1,ρ1,F )

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.11 . . . .
(0.35,0.15) 0.96 0.96 0.96 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.00,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 0.10 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.00,0.40) 1.00 1.00 1.00 1.00 1.00

Notes: Based on 500 replications of each simulation design. Dots (.) denote combinations of
values for β1 and β2 that produce lower correlations between the instrument st and the target
structural shock εrt than between the instrument and the other structural shock (εzt ). These
cases are not taken into account in the analysis.

Table A.3: Comparison of MSE of impulse responses to monetary policy shock.

Relevance (β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31

(0,0)
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 1.00 1.00 1.00 . . . . . . . . . . . .
Model C 113.18 74.12 132.97 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.01 1.07 1.01 1.01 1.05 1.01 0.98 0.82 0.98 . . . . . .
Model C 37.66 22.56 39.75 37.70 26.73 40.38 35.82 42.07 41.48 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.08 1.25 1.08 1.07 1.18 1.08 1.01 0.73 0.99 0.90 0.42 0.85 0.76 0.20 0.68
Model C 13.18 7.21 12.34 13.38 8.75 12.71 14.30 13.46 14.60 14.43 13.43 15.22 12.95 9.54 13.56

(1.0,0.40)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.18 1.46 1.22 1.18 1.36 1.22 1.10 0.78 1.10 0.98 0.44 0.94 0.81 0.23 0.72
Model C 7.95 4.54 7.41 8.07 5.39 7.60 8.70 7.68 8.69 9.00 7.77 9.24 8.60 6.60 8.85

Notes: The table shows the cumulated MSE of fitted models A-C relative to model A for a
propagation horizon up to h = 25 and sample size T = 500. Each entry is based on 500
replications of each simulation design. Dots (.) denote combinations of values for β1 and β2 that
produce lower correlations between the instrument wt and the target structural shock εrt than
between the instrument and the non-targeted structural shock εzt . These cases are not taken into
account in the analysis.
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Table A.4: Comparison of MSE of impulse responses to monetary policy shock for
a propagation horizon up to h = 5 and sample size T = 200.

Relevance (β1,ρ1)

Endogeneity (β2,ρ2)

(0.0,0.0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31

(0.0,0.0)
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 1.05 1.05 1.08 . . . . . . . . . . . .
Model C 35.52 42.45 64.68 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.05 1.06 1.16 1.04 1.04 1.15 1.04 0.87 1.12 . . . . . .
Model C 20.33 21.83 31.57 20.30 21.45 30.73 18.46 20.31 26.79 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.09 1.21 1.18 1.08 1.11 1.10 1.06 0.85 0.99 0.97 0.56 0.95 0.79 0.35 0.90
Model C 10.97 7.92 10.83 10.92 8.11 10.80 10.26 8.89 10.92 8.61 7.48 9.48 6.29 5.88 7.89

(1.0,0.40)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.14 1.34 1.23 1.14 1.24 1.22 1.05 1.08 1.10 1.02 0.76 1.05 0.97 0.48 1.09
Model C 7.19 4.70 6.21 7.15 4.72 6.16 6.99 5.70 6.40 6.61 5.24 5.70 5.62 4.55 5.28

Notes: The table shows the cumulated MSE of fitted models A-C relative to model A. Each entry
is based on 500 replications of each simulation design. Dots (.) denote combinations of values for
β1 and β2 that produce lower correlations between the instrument st and the target structural
shock εrt than between the instrument and the other structural shock (εzt ). These cases are not
taken into account in the analysis.

Table A.5: Comparison of MSE of impulse responses to monetary policy shock for
a propagation horizon up to h = 5 and sample size T = 500.

Relevance (β1,ρ1)

Endogeneity (β2,ρ2)

(0.0,0.0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31

(0.0,0.0)
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 1.00 1.00 1.00 . . . . . . . . . . . .
Model C 115.53 157.32 226.58 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.02 1.06 1.00 1.01 1.02 1.00 0.99 0.78 0.99 . . . . . .
Model C 47.14 44.47 61.63 45.83 48.35 60.36 37.40 57.00 50.29 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.07 1.19 1.05 1.06 1.10 1.05 1.05 0.69 1.04 1.02 0.40 1.01 0.93 0.20 0.96
Model C 18.19 11.04 15.11 18.04 12.90 15.03 17.03 16.74 14.26 15.80 15.85 13.17 13.72 11.39 11.55

(1.0,0.40)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.16 1.66 1.31 1.16 1.53 1.32 1.15 0.91 1.33 1.12 0.52 1.30 1.01 0.22 1.03
Model C 10.76 6.59 8.51 10.72 7.67 8.51 10.45 9.56 8.36 10.07 9.21 8.07 9.25 7.62 7.64

Notes: The table shows the cumulated MSE of fitted models A-C relative to model A. Each entry
is based on 500 replications of each simulation design. Dots (.) denote combinations of values for
β1 and β2 that produce lower correlations between the instrument st and the target structural
shock εrt than between the instrument and the other structural shock (εzt ). These cases are not
taken into account in the analysis.
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Table A.6: Comparison of MSE of impulse responses to monetary policy shock for
a propagation horizon up to h = 25 and sample size T = 200 including model C*.

Relevance (β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31

(0,0)
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 1.02 1.02 1.02 . . . . . . . . . . . .
Model C 31.51 24.34 36.22 . . . . . . . . . . . .
Model C* 182.39 87.61 179.38 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.01 1.03 1.02 1.01 1.02 1.03 0.95 0.78 0.92 . . . . . .
Model C 16.48 12.73 18.02 16.33 13.06 17.87 15.10 13.64 16.44 . . . . . .
Model C* 41.69 34.54 46.04 77.64 46.19 76.24 11595.82 6269.91 17061.19 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.06 1.20 1.06 1.06 1.18 1.06 0.98 0.90 0.95 0.87 0.54 0.82 0.68 0.31 0.64
Model C 7.91 5.75 7.57 7.85 5.99 7.54 7.73 6.71 7.79 7.24 5.72 7.48 5.89 4.51 6.30
Model C* 7.73 9.90 8.23 8.77 13.54 9.54 9.21 10.68 9.16 12.22 9.36 12.23 8.42 7.32 9.34

(1.0,0.40)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.21 1.37 1.22 1.15 1.20 1.14 1.05 1.05 1.04 0.96 0.72 0.92 0.81 0.43 0.75
Model C 5.22 3.62 4.87 5.10 3.58 4.72 5.19 4.46 5.01 5.30 4.45 5.17 4.80 3.68 4.76
Model C* 4.86 6.44 5.03 5.50 6.61 5.19 4.50 6.76 4.76 5.43 6.95 5.90 5.75 5.88 6.27

Notes: The table shows the cumulated MSE of fitted models A-C* relative to model A. Model
C* includes the instrument ordered first and is identified by a lower triangular Choleski decom-
position. Each entry is based on 500 replications of each simulation design. Dots (.) denote
combinations of values for β1 and β2 that produce lower correlations between the instrument st
and the target structural shock εrt than between the instrument and the other structural shock
(εzt ). These cases are not taken into account in the analysis.
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Table A.7: Comparison of MSE of impulse responses to monetary policy shock for
a propagation horizon up to h = 25 and sample size T = 500 including model C*.

Relevance (β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31 θ11 θ21 θ31

(0,0)
Model A 1.00 1.00 1.00 . . . . . . . . . . . .
Model B 1.00 1.00 1.00 . . . . . . . . . . . .
Model C 113.17 74.11 132.97 . . . . . . . . . . . .
Model C* 1537.89 1682.47 2296.01 . . . . . . . . . . . .

(0.35,0.15)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 . . . . . .
Model B 1.01 1.07 1.01 1.01 1.05 1.01 0.98 0.82 0.98 . . . . . .
Model C 37.66 22.56 39.76 37.70 26.73 40.39 35.82 42.07 41.48 . . . . . .
Model C* 56.37 48.58 60.75 62.46 51.49 67.51 179.39 130.00 191.96 . . . . . .

(0.72,0.30)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.08 1.25 1.08 1.07 1.18 1.08 1.01 0.73 0.99 0.90 0.42 0.85 0.76 0.20 0.68
Model C 13.18 7.21 12.34 13.38 8.75 12.71 14.30 13.46 14.60 14.44 13.43 15.23 12.95 9.49 13.57
Model C* 12.66 13.60 14.88 10.64 13.99 11.21 13.52 20.71 15.05 16.98 21.14 19.15 18.16 15.15 19.61

(1.0,0.40)
Model A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model B 1.18 1.46 1.22 1.18 1.36 1.22 1.10 0.78 1.10 0.98 0.44 0.94 0.81 0.23 0.72
Model C 7.95 4.54 7.41 8.07 5.39 7.61 8.70 7.68 8.69 9.00 7.77 9.24 8.60 6.60 8.85
Model C* 6.28 7.48 6.88 5.97 7.77 6.27 7.48 10.95 8.08 9.72 11.62 10.63 11.22 10.20 11.93

Notes: The table shows the cumulated MSE of fitted models A-C* relative to model A. Model
C* includes the instrument ordered first and is identified by a lower triangular Choleski decom-
position. Each entry is based on 500 replications of each simulation design. Dots (.) denote
combinations of values for β1 and β2 that produce lower correlations between the instrument st
and the target structural shock εrt than between the instrument and the other structural shock
(εzt ). These cases are not taken into account in the analysis.
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A.2.2 Tests for alternative DGPs

This subsection contains robustness checks and extensions of the simulation study.

A.2.2.1 Confounding common shift in variances

Table A.8: Relative rejection frequencies at nominal significance level of 10% of
exogeneity test for common confounding shift.

Sample
Size

Relevance
(hβ1,hρ1)

Endogeneity (hβ2,hρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.09 . . . .
(0.35,0.15) 0.12 0.14 0.27 . .
(0.72,0.30) 0.14 0.14 0.24 0.31 0.43
(1.0,0.40) 0.13 0.14 0.19 0.29 0.35

T = 500

(0,0) 0.10 . . . .
(0.35,0.15) 0.12 0.17 0.62 . .
(0.72,0.30) 0.11 0.13 0.38 0.63 0.80
(1.0,0.40) 0.10 0.11 0.27 0.48 0.67

Table A.9: Relative rejection frequencies at nominal significance level of 5% of
relevance test for confounding common shift.

Sample
Size

Relevance
(hβ1,hρ1)

Endogeneity (hβ2,hρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.09 . . . .
(0.35,0.15) 0.96 0.96 0.97 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 0.05 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.2.2.2 Alternative structural shock variances

Table A.10: Relative rejection frequencies at nominal significance level of 10% of
LR-Tests of exogeneity of instrument for alternative structural shock variances.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.20,0.12) (0.30,0.16) (0.40,0.22)

T = 200

(0,0) 0.10 . . . .
(0.35,0.15) 0.13 0.16 0.26 . .
(0.72,0.30) 0.14 0.15 0.22 0.31 0.38
(1.0,0.40) 0.13 0.13 0.19 0.27 0.35

T = 500

(0,0) 0.11 . . . .
(0.35,0.15) 0.12 0.14 0.57 . .
(0.72,0.30) 0.11 0.13 0.33 0.61 0.76
(1.0,0.40) 0.09 0.11 0.22 0.43 0.64

Table A.11: Relative rejection frequencies at nominal significance level of 5% of
LR-test of instrument relevance for alternative structural shock variances.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.09 . . . .
(0.35,0.15) 0.93 0.94 0.94 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 0.06 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.2.2.3 Censored instrument observations

Table A.12: Relative rejection frequencies at nominal significance level of 10% for
exogeneity test with 60% censored instrument observations.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.10 . . . .
(0.35,0.15) 0.14 0.15 0.40 . .
(0.72,0.30) 0.14 0.17 0.37 0.62 0.82
(1.0,0.40) 0.15 0.17 0.36 0.55 0.75

T = 500

(0,0) 0.08 . . . .
(0.35,0.15) 0.08 0.17 0.75 . .
(0.72,0.30) 0.10 0.18 0.68 0.96 1.00
(1.0,0.40) 0.10 0.16 0.61 0.90 1.00

Table A.13: Relative rejection frequencies at nominal significance level of 5% for
relevance test with 60% censored instrument observations.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.04 . . . .
(0.35,0.15) 0.84 0.83 0.84 . .
(0.72,0.30) 0.98 0.98 0.97 0.96 0.96
(1.0,0.40) 0.98 0.99 0.98 0.98 0.97

T = 500

(0,0) 0.04 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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Table A.14: Relative rejection frequencies at nominal significance level of 10% for
exogeneity test with 90% censored instrument observations.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.08 . . . .
(0.35,0.15) 0.11 0.11 0.20 . .
(0.72,0.30) 0.17 0.16 0.25 0.37 0.56
(1.0,0.40) 0.17 0.17 0.27 0.37 0.51

T = 500

(0,0) 0.06 . . . .
(0.35,0.15) 0.07 0.09 0.41 . .
(0.72,0.30) 0.08 0.10 0.37 0.70 0.93
(1.0,0.40) 0.09 0.10 0.35 0.65 0.88

Table A.15: Relative rejection frequencies at nominal significance level of 5% for
relevance test with 90% censored instrument observations.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.05 . . . .
(0.35,0.15) 0.61 0.59 0.59 . .
(0.72,0.30) 0.96 0.95 0.94 0.93 0.92
(1.0,0.40) 0.97 0.97 0.97 0.97 0.96

T = 500

(0,0) 0.05 . . . .
(0.35,0.15) 0.95 0.96 0.94 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.2.2.4 Two instruments for one shock

If there are q instruments, wt and νt in

wt = βεt + ηνt, (A.1)

are q × 1 column vectors, where νt are independent potentially heteroskedastic
measurement errors, and β and η matrices with dimension q×q. In the simulation
study, we consider the case of q = 2 for the identification of one shock. As for
q = 1, we order the structural shock of interest first.

Validity of the q instruments requires the following two conditions:

β·i = 0q×1 ∀ i = 2, . . . , K, (A.2)

β·1 ̸= 0q×1, (A.3)

where β·i indicates the i-th column of β. Equation (A.2) implies exogeneity and
(A.3) relevance. If both are met, the instruments are valid.

The augmented VAR is

zt = δ + Γ(L)zt−1 + et, (A.4)

where zt = [y′t, wt]
′ is a ((K + q) × 1)-vector of observable variables, Γ(L) is a

(potentially restricted) lag matrix polynomial capturing the autoregressive com-
ponent of the model, δ is a ((K + q) × 1)-vector of constant terms, and et are
(K + q)-dimensional serially uncorrelated residuals. The latter are related to the
structural innovations µt as

et = Dµt

=

[
B(K×K) 0(K×q)

β(q×K) η(q×q)

] [
εt
νt

]
. (A.5)

Using (A.5), the VAR in structural form is

zt = δ + Γ(L)zt−1 +Dµt. (A.6)

Estimation and identification of (A.5) remains as described in Section 2. Test-
ing the validity of the q instruments can also be done with LR-tests. To test
the exogeneity condition (A.2), we compare the likelihood of a model with β =
(β·1, 0q×1, . . . , 0q×1), against a model with β fully unrestricted. Formally, we test

H0 : β·2 = · · · = β·K = 0q×1

H1 : ∃j ∈ {2, . . . , K} s.t. β·j ̸= 0q×1.
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This is a joint test of exogeneity of both instruments. Rejecting the null indicates
the endogeneity of at least one instrument.

To test the relevance condition (A.3), we compare a restricted model version
with β·1 = 0q×1 to a model with β·1 unrestricted. Under both the null and the
alternative hypothesis β·2 = · · · = β·K = 0q×1. Formally, we test

H0 : β·1 = 0q×1

H1 : β·1 ̸= 0q×1.

This is a joint test of relevance of both instruments. Rejecting the null indicates
the relevance of at least one instrument. If the instruments are both exogenous
and relevant, they are valid. Then, we set β = (β·1, 0q×1, . . . , 0q×1).

Table A.16: Relative rejection frequencies at nominal significance level of 10%
of LR-tests for exogeneity with second (strong and exogenous) instrument (ρ1 =
0.3, ρ2 = 0).

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0.0,0.0) 0.13 . . . .
(0.35,0.15) 0.15 0.18 0.50 . .
(0.72,0.30) 0.14 0.17 0.42 0.75 0.95
(1.0,0.40) 0.13 0.15 0.39 0.67 0.90

T = 500

(0.0,0.0) 0.10 . . . .
(0.35,0.15) 0.10 0.18 0.82 . .
(0.72,0.30) 0.09 0.16 0.78 0.99 1.00
(1.0,0.40) 0.10 0.16 0.73 0.98 1.00

12



Table A.17: Relative rejection frequencies at nominal significance level of 5% of LR-
tests for relevance with second (strong and exogenous) instrument (ρ1 = 0.3, ρ2 =
0).

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0.0,0.0) 0.98 . . . .
(0.35,0.15) 0.98 0.98 0.98 . .
(0.72,0.30) 0.99 0.99 1.00 1.00 1.00
(1.00,0.40) 0.99 1.00 0.99 1.00 1.00

T = 500

(0.0,0.0) 1.00 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.00,0.40) 1.00 1.00 1.00 1.00 1.00

Table A.18: Relative rejection frequencies at nominal significance level of 10% of
LR-tests for exogeneity with second (endogenous) instrument (ρ1 = 0.3, ρ2 = 0.15).

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.66 . . . .
(0.35,0.15) 0.71 0.66 0.71 . .
(0.72,0.30) 0.73 0.67 0.65 0.76 0.89
(1.0,0.40) 0.75 0.71 0.64 0.72 0.82

T = 500

(0,0) 0.97 . . . .
(0.35,0.15) 0.99 0.97 0.99 . .
(0.72,0.30) 0.99 0.98 0.98 0.99 1.00
(1.0,0.40) 0.99 0.99 0.98 0.98 1.00

Table A.19: Relative rejection frequencies at nominal significance level of 5% of
LR-tests for relevance with second (endogenous) instrument (ρ1 = 0.3, ρ2 = 0.15).

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.99 . . . .
(0.35,0.15) 0.99 0.98 0.99 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 1.00 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00

13



A.2.2.5 DGP is MS(3)

Table A.20: Relative rejection frequencies at nominal significance level of 10% for
exogeneity test and DGP with M = 3 Markov states.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.11 . . . .
(0.35,0.15) 0.12 0.13 0.46 . .
(0.72,0.30) 0.12 0.13 0.40 0.72 0.90
(1.0,0.40) 0.12 0.12 0.35 0.68 0.84

T = 500

(0,0) 0.12 . . . .
(0.35,0.15) 0.10 0.22 0.85 . .
(0.72,0.30) 0.10 0.20 0.81 0.99 1.00
(1.0,0.40) 0.09 0.18 0.75 0.98 1.00

Table A.21: Relative rejection frequencies at nominal significance level of 5% rel-
evance test for DGP with M = 3 Markov states.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.08 . . . .
(0.35,0.15) 0.93 0.93 0.92 . .
(0.72,0.30) 1.00 1.00 1.00 0.99 0.99
(1.0,0.40) 1.00 1.00 1.00 1.00 0.99

T = 500

(0,0) 0.06 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.2.2.6 DGP with failure of constancy of impact effects matrix

Table A.22: Relative rejection frequencies at nominal significance level of 10% of
exogeneity test for failure of constancy of impact effects.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.10 . . . .
(0.35,0.15) 0.11 0.14 0.47 . .
(0.72,0.30) 0.15 0.17 0.43 0.73 0.90
(1.0,0.40) 0.17 0.19 0.40 0.66 0.85

T = 500

(0,0) 0.10 . . . .
(0.35,0.15) 0.13 0.22 0.86 . .
(0.72,0.30) 0.20 0.29 0.80 0.97 1.00
(1.0,0.40) 0.25 0.33 0.73 0.94 0.99

Table A.23: Relative rejection frequencies at nominal significance level of 5% of
relevance test for mild failure of constancy of impact effects.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.05 . . . .
(0.35,0.15) 0.97 0.97 0.97 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 0.06 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.2.2.7 DGP with smooth transition in variances

Our parameter choice in the simulations of γ = −sqrt(T )/10 and c = 0.5T (Sec-
tion A.4) ensures a variance change roughly in the middle of the sample. The
choice implies that the variance change is largely completed over about 20% of the
respective sample size.

Table A.24: Relative rejection frequencies at nominal significance level of 10% for
exogeneity test and DGP with smooth transition in variances.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.12 . . . .
(0.35,0.15) 0.12 0.17 0.51 . .
(0.72,0.30) 0.14 0.15 0.48 0.77 0.94
(1.0,0.40) 0.13 0.15 0.43 0.72 0.92

T = 500

(0,0) 0.10 . . . .
(0.35,0.15) 0.10 0.19 0.82 . .
(0.72,0.30) 0.11 0.20 0.77 0.99 1.00
(1.0,0.40) 0.10 0.18 0.71 0.97 1.00

Table A.25: Relative rejection frequencies at nominal significance level of 5% for
relevance test and DGP with smooth transition in variances.

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0.,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.05 . . . .
(0.35,0.15) 0.89 0.89 0.88 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 0.06 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.2.2.8 DGP with exogenous break in variances

For a description of the model see Section A.4.

Table A.26: Relative rejection frequencies at nominal significance level of 10% for
exogeneity test and DGP with exogenous break in variances at 0.5T .

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.11 . . . .
(0.35,0.15) 0.11 0.16 0.53 . .
(0.72,0.30) 0.12 0.15 0.51 0.79 0.96
(1.0,0.40) 0.12 0.14 0.46 0.75 0.93

T = 500

(0,0) 0.10 . . . .
(0.35,0.15) 0.10 0.20 0.85 . .
(0.72,0.30) 0.10 0.19 0.80 0.99 1.00
(1.0,0.40) 0.10 0.18 0.75 0.98 1.00

Table A.27: Relative rejection frequencies at nominal significance level of 5% for
relevance test and DGP with exogenous break in variances at 0.5T .

Sample
Size

Relevance
(β1,ρ1)

Endogeneity (β2,ρ2)

(0,0) (0.05,0.03) (0.17,0.10) (0.27,0.15) (0.37,0.20)

T = 200

(0,0) 0.06 . . . .
(0.35,0.15) 0.92 0.92 0.91 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00

T = 500

(0,0) 0.04 . . . .
(0.35,0.15) 1.00 1.00 1.00 . .
(0.72,0.30) 1.00 1.00 1.00 1.00 1.00
(1.0,0.40) 1.00 1.00 1.00 1.00 1.00
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A.3 Additional results of baseline model

This section contains additional results for the baseline model.

Table A.28: Estimates and standard errors of matrix of transition probabilities.

P̂ =

[
0.951 (0.029) 0.302 (.)
0.049 (0.165) 0.698 (.)

]
Notes: Estimates of transition matrix P for baseline heteroskedastic proxy-SVAR(6) with M =
2 states with zt = [fft, ipt, pcet, prmt, rrt]

′. The standard errors (in parentheses) are obtained
from the inverse of the negative Hessian evaluated at the optimum of the structural model.
Standard errors are available only for K − 1 columns of matrix P as each row need to sum up
to 1 and hence the Kth-element of each row is not estimated. The respective entries for the
standard errors are marked with (.).

Table A.29: Estimates and standard errors of matrix of instantaneous impact effect
matrix D.

Estimates
-0.001 0.020 -0.004 0.001 0
-0.039 0.003 0.003 0.001 0
0.002 0.002 0.001 0.004 0
0.001 0.038 0.087 -0.027 0
-0.137 0 0 0 0.375

S.E.

0.001 0.001 0.005 0.003 .
0.002 0.003 0.003 0.004 .
0.001 0.001 0.001 0.002 .
0.004 0.022 0.013 0.027 .
0.039 . . . 0.024

Notes: Estimates of instantaneous impact effect matrix D in the upper panel for baseline het-
eroskedastic proxy-SVAR(6) with M = 2 states with zt = [fft, ipt, pcet, prmt, rrt]

′. The standard
errors in the lower panel are obtained from the inverse of the negative Hessian evaluated at the
optimum of the structural model.

The regime-specific forecast error variance decompositions in Figure A.1 quan-
tify the economic importance of monetary policy shocks for output and credit
spread fluctuations. It shows that the contribution of monetary shocks to the vari-
ability of the endogenous variables is highly state-dependent. In the high volatility
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regime, monetary shocks account for up more than half of the variance of produc-
tion and prices at longer horizons. In the low volatility regime, they each explain
between 10% and 25%. The monetary shocks also account for a much larger share
of the variance in the federal funds rate in the high volatility regime than in the
low volatility regime.

Figure A.1: Variance decompositions for heteroskedastic proxy-SVAR.
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Notes: The figure shows the regime-specific forecast error variance decompositions (solid line -
state 1; dashed line - state 2) for the structural shocks in columns on the endogenous variables
in rows for the baseline Markov switching heteroskedastic proxy-SVAR(6) model with M = 2
states and zt = [fft, ipt, pcet, prmt, rrt]

′. The sample is 1980M1-2007M6 and the instrument for
monetary policy shocks is the narrative-based measure of Romer and Romer (2004).
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A.4 Sensitivity analysis of baseline model

In this section we show various sensitivity results for the baseline heteroskedastic
proxy-SVAR(6) model withM = 2 states, zt = [fft, ipt, pcet, prmt, rrt]

′ and sample
1980M1-2007M6. The model is described in detail in Section 4 of the paper. More
information is in the captions and notes of the figures and tables.

A.4.1 Alternative volatility models

Various approaches have been used in the SVAR literature to identify the structural
parameters by time-varying volatility besides the Markov switching in covariances,
which we apply in our baseline specification. The following expositions are taken,
apart from minor notational adjustments, from Lütkepohl and Netšunajev (2017)
and Lütkepohl and Schlaak (2018) and explain the different approaches briefly.
For a more detailed overview we refer to the respective papers.

Exogenous volatility changes

One alternative to model time-varying volatility is to assume that the changes of
the covariance occur at prespecified break dates,

E(ete′t) = Σ̃t = Σ̃m for t ∈ Tm, m = 1, . . . ,M, (A.7)

where Tm = {Tm−1 + 1, . . . , Tm} (m = 1, . . . ,M) are M given volatility regimes
of consecutive time periods. The Tm, for m = 1, . . . ,M − 1, represent the time
periods of volatility changes with T0 = 0 and TM = T . The change points Tm may
be predetermined by some statistical procedure, for example, Chow breakpoint
tests. Lanne, Lütkepohl and Maciejowska (2010) state the identification conditions
for this model. Assuming Gaussian residuals ut, the log-likelihood function is

log l(ξ,σ) = −KT

2
log 2π − 1

2

T∑
t=1

log det(Σ̃t)−
1

2

T∑
t=1

e′tΣ̃
−1
t et, (A.8)

where ξ = vec[ν,A1, . . . , Ap] and σ contains all unknown covariance parameters.

Smooth transition in variances

Alternatively, one may model the change in the residual covariance matrix as
a smooth transition from a volatility regime with a positive definite covariance
matrix Σ̃1 to a regime with Σ̃2 such that

E(ete′t) = Σ̃t = (1−G(γ, c, wt))Σ̃1 +G(γ, c, wt)Σ̃1, (A.9)
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where the transition function G(γ, c, wt) = (1+exp[− exp(γ)(wt− c)])−1 is a logis-
tic function that depends on the smoothness parameter γ, the location parameter c
and a transition variable wt. In this setup, small values of the smoothness parame-
ter γ imply a slow, gradual transition from one volatility regime to the other. When
the smoothness parameter becomes very large, however, the transition resembles
a step function with a discrete change between volatility states. A locally unique
decomposition of the reduced form covariance matrices is obtained if Σ̃1 = DD′

and Σ̃2 = DΛD′, where the diagonal matrix Λ = diag(λ1, . . . , λK) has distinct,
strictly positive values λk (k = 1, . . . , K). This model was proposed and used by
Lütkepohl and Netšunajev (2014) in the context of SVAR analysis.

For Gaussian et, the log-likelihood can be written as in (A.8). It is now a
function of the transition parameters as well. Lütkepohl and Netšunajev (2014)
propose an iterative procedure for estimation. Since the range of the smoothness
and threshold parameters {γ, c} can be bounded, a grid search can be performed
over the relevant range of these two parameters.

Multivariate GARCH

Multivariate GARCH processes offer yet another possibility to model time-varying
volatility. In the context of SVAR analysis the GO-GARCH model proposed by
van der Weide (2002) is typically used. It specifies the volatility changes as

E(ete′t|Ft−1) = Σ̃t|t−1 = DΛt|t−1D
′. (A.10)

Here Ft denotes the information available at time t,

Λt|t−1 = diag(σ2
1,t|t−1, . . . , σ

2
K,t|t−1)

is a diagonal matrix with univariate GARCH(1,1) diagonal elements,

σ2
k,t|t−1 = (1− γk − gk) + γkε

2
k,t−1 + gkσ

2
k,t−1|t−2, k = 1, . . . , K, (A.11)

where εk,t = b∗ket and b∗k is the kth row of B−1 (k = 1, . . . , K). Moreover, gk ≥ 0,
γk > 0, gk + γk < 1 (k = 1, . . . , K). The model has been proposed and used for
SVAR analysis by Normandin and Phaneuf (2004) and Bouakez and Normandin
(2010), for example. Identification conditions for uniqueness of B are stated in
Sentana and Fiorentini (2001) and Milunovich and Yang (2013).

The setup of the model implies an unconditional residual covariance matrix
E(ete′t) = Σ̃ = DD′. Under Gaussian assumptions for the εk,t the log-likelihood

of the model is log l =
∑T

t=1 log ft|t−1(yt), where the conditional densities have the
form

ft|t−1(yt) = (2π)−K/2 det(Σ̃t|t−1)
−1/2 exp

(
−1

2
e′tΣ̃

−1
t|t−1et

)
. (A.12)
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The log-likelihood function is highly nonlinear which makes the maximization and,
thus, ML estimation of the GARCH parameters and the impact effects matrix D
numerically challenging. We follow the existing literature and apply the two-step
algorithm for ML estimation described by Lanne and Saikkonen (2007). In the first
step, the estimation procedure is broken down in univariate GARCH estimations
to get initial estimates of the parameters of the volatility model and in the second
step, a full, joint ML estimation of the parameters is performed starting from the
initial estimates obtained in the first step.

A.4.2 Smooth transition in variances

In this subsection, we assess whether our results are sensitive to a smooth transition
in variances model with time as transition variable. Figure A.2 compares the
volatility states across models. The smooth transition model estimates roughly
similar states as the MS model. It matches the transition of the Fed chairmanship
from Volcker to Greenspan. Accordingly, Table A.30 shows that the instrument is
also valid when using this volatility model. Finally, Figure A.3 illustrates that the
estimated effects of monetary policy shocks are similar to those from the baseline
MS model as well.

Table A.30: Instrument validity for smooth transition in variance model.

Exogeneity Relevance

LR-statistic 2.285 60.829
p-value 0.515 0.000
Restrictions 3 1

Notes: The table shows the LR-statistic, the p-value and the number of restrictions for the tests
of instrument exogeneity (H0 : β2 = · · · = βK = 0, H1 : β unrestricted) and instrument
relevance (H0 : β1 = 0, H1 : β1 ̸= 0). The instrument is the narrative-based measure of
monetary surprises of Romer and Romer (2004).
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Figure A.2: Volatility states 2 of Markov switching and smooth transition model.
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Notes: The figure shows the state 2 probability of heteroskedastic proxy-SVARs, using the
baseline Markov switching heteroskedastic proxy-SVAR(6) model with m = 2 states (upper
panel) and smooth transition in variances SVAR(6) based on time as transition variable (lower
panel). The model is zt = [fft, ipt, pcet, prmt, rrt]

′. The shaded vertical bars mark recession
periods defined by the NBER.
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Figure A.3: Comparison of smooth transition with baseline Markov switching
model.

-1

0

1

-2

-1

0

-1.00

-0.75

-0.50

-0.25

0.00

-10

-5

0

0 20 40 60

0 20 40 60

0 20 40 60

0 20 40 60

F
e
d

 F
u

n
d

s
 (

p
p

)
In

d
u

s
tr

ia
l 
P

ro
d

. 
(%

)
C

o
n

s
u

m
e
r 

P
ri

c
e
s
 (

%
)

C
o

m
m

o
d

it
y
 P

ri
c
e
s
 (

%
)

Models MS-VAR STAR-VAR MS-VAR 95 %

Notes: The figure shows impulse responses to a 100 basis points monetary policy shock of
heteroskedastic proxy-SVAR models using the baseline Markov Switching heteroskedastic proxy-
SVAR(6) model with M = 2 states (shaded areas and dash dotted lines) and a smooth transition in
variances with time as transition variable (dashed line). The shaded area denotes 95% pointwise
confidence intervals based on 5,000 bootstrap replications of the baseline Markov switching proxy-
SVAR(6).

24



A.4.3 Robustness of Markov switching proxy-SVAR

Figure A.4: Smoothed state probabilities of Markov switching proxy-SVAR(6)
model with M = 3 states.
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Notes: The figure shows the estimated smoothed state probabilities ξ̂mt|T for m = 1 in the
upper panel, for m = 2 in the middle panel, and for m = 3 in the lower panel, where t =
1, . . . , T , of the Markov switching proxy-SVAR(6) model with M = 3 states. The dataset is
zt = [fft, ipt, pcet, prmt, rrt]

′. The shaded vertical bars mark recession periods as defined by the
NBER.
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Table A.31: Instrument validity for MS(3)-VAR(6) model.

Exogeneity Relevance

LR-statistic 1.405 33.547
p-value 0.704 0.000
Restrictions 3 1

Notes: The table shows the LR statistic, p-value and number of restrictions of the test for
instrument exogeneity (H0 : β2 = · · · = βK = 0, H1 : β unrestricted) and for instrument
relevance (H0 : β1 = 0, H1 : β1 ̸= 0) for a Markov switching proxy-SVAR(6) model with
M = 3 states. The instrument is the narrative-based measure of monetary surprises of Romer
and Romer (2004).

Figure A.5: Impulse responses for Markov switching proxy-SVAR(6) model with
M = 3 states.
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Notes: The figure shows the impulse responses to one standard deviation shocks in state m =
1 of the Markov switching proxy-SVAR(6) model with M = 3 states. The dataset is zt =
[fft, ipt, pcet, prmt, rrt]

′. The sample is 1980M1-2007M6 and the instrument for monetary policy
shocks is the narrative-based measure of Romer and Romer (2004). The shaded bands denote
95% pointwise confidence intervals based on 1,000 bootstrap replications.
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Figure A.6: Sensitivity analysis of baseline model using different lag lengths.
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Notes: The figure shows the impulse responses to a monetary policy shock of 100 basis points
in state m = 1 of the heteroskedastic proxy-SVAR(p) with M = 2 states with p = 4, 5, 7, 8. The
dataset is zt = [fft, ipt, pcet, prmt, rrt]

′. The sample is 1980M1-2007M6 and the instrument for
monetary policy shocks is the narrative-based measure of Romer and Romer (2004). The shaded
bands denote 95% pointwise confidence intervals based on 1,000 bootstrap replications of the
baseline heteroskedastic proxy-SVAR(6) model with M = 2 states.
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Figure A.7: Sensitivity analysis of baseline model using different sample periods.
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Notes: The figure shows the impulse responses to a monetary policy shock of 25 basis points
in state m = 1 of the heteroskedastic proxy-SVAR(6) model with M = 2 states. The dataset
is zt = [fft, ipt, pcet, prmt, rrt]

′ for different sample specifications. Sample 1 refers to 1982M1-
2007M6, Sample 2 refers to 1981M1-2007M6, Sample 3 refers to 1980M1-2005M6, Sample 4 refers
to 1980M1-2006M6. The instrument for monetary policy shocks is the narrative-based measure
of Romer and Romer (2004). The shaded bands denote 95% pointwise confidence intervals based
on 1,000 bootstrap replications of the baseline heteroskedastic proxy-SVAR(6) model withM = 2
states for the sample 1980M1-2007M6.
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Figure A.8: Sensitivity analysis of baseline model using alternative indicator for
monetary policy.
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Notes: The figure shows the impulse responses to a monetary policy shock of 25 basis points in
state m = 1 of the heteroskedastic proxy-SVAR(6) model with M = 2 states. The dataset is
zt = [fft, ipt, pcet, prmt, rrt]

′, where 1yrt refers to the US government bond yield with one year
maturity. The sample is 1980M1-2007M6 and the instrument for monetary policy shocks is the
narrative-based measure of Romer and Romer (2004). The shaded bands denote 95% pointwise
confidence intervals based on 1,000 bootstrap replications of the baseline heteroskedastic proxy-
SVAR(6) model with M = 2 states and zt = [ipt, fft, pcet, prmt, rrt]

′.
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Figure A.9: Sensitivity analysis of baseline model using a residual-based moving
block bootstrap method.
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Notes: The figure shows the impulse responses to a monetary policy shock of 100 basis points
in state m = 1 of the baseline heteroskedastic proxy-SVAR(6) model with M = 2 states. The
dataset is zt = [fft, ipt, pcet, prmt, rrt]

′. The shaded bands denote 95% pointwise confidence
intervals based on 1,000 bootstrap replications of the baseline heteroskedastic proxy-SVAR(6)
model with M = 2 states. The dashed lines denote the 95% pointwise confidence intervals
based on 1,000 bootstrap replications of a VAR-residual moving block bootstrap. Bootstrapped
samples are constructed by sampling blocks of the estimated residuals êt of model (8) of the main
paper. Using block length of l = 50 defines n = T/l as the number of nonoverlapping blocks,
where ln ≥ T . The blocks of length l of the estimated residuals êt are arranged in the form of
the matrix

ê1 ê2 . . . êl
ê2 ê3 . . . ê1+l

...
...

...
êT−l+1 êT−l+2 . . . êT

 .

The bootstrap residuals are recentered by removing the columnwise mean to ensure that the
bootstrap residuals have mean zero, i.e., ẽjl+i = êjl+i − 1

T−l+1

∑T−l
r=0 êi+r for i = 1, 2, . . . , l and

j = 0, 1, . . . , n − 1. Bootstrap residuals are generated by drawing n times with replacement
from the recentered rows of the matrix. These draws are combined in a time series of bootstrap
residuals, [e∗1, . . . , e

∗
T ], by joining them end-to-end and retaining the first T bootstrap residuals.

Each bootstrap samples starts with identical pre-sample values from the original data set as
initial values, i.e., z∗−p+1 = z−p+1, . . . , z

∗
0 = z0 and is then generated recursively for t = 1, . . . , T

as z∗t = δ̂+Γ̂(L)zt−1+êt. In this bootstrap, also the relative variances and transition probabilities
are re-estimated in each bootstrap repetition. The ordering of the relative variances and, hence,
of columns of D in each bootstrap repetition is done identically to the procedure described in
the main paper.
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Figure A.10: Sensitivity analysis of baseline model using an recursive design wild
bootstraps with draws from standard normal distribution.
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Notes: The figure shows the impulse responses to a monetary policy shock of 100 basis points
in state m = 1 of the baseline heteroskedastic proxy-SVAR(6) model with M = 2 states. The
dataset is zt = [fft, ipt, pcet, prmt, rrt]

′. The shaded bands denote 95% pointwise confidence
intervals based on 1,000 bootstrap replications of the baseline heteroskedastic proxy-SVAR(6)
model with M = 2 states. The dashed lines denote the 95% pointwise confidence intervals based
on 5,000 bootstrap replications of an alternative recursive design wild bootstrap. Bootstrapped
samples are contructed as z∗t = δ̂ + Γ̂(L)zt−1 + φ̃têt, where êt are the estimated residuals, δ̂ and
Γ̂(L) are estimated counterparts of the coefficients the model (8) of the main paper, and φ̃t is
an independent random variable drawn from a standard normal distribution, i.e., φ̃ ∼ N(0, 1).
Each of the 1,000 generated bootstrap samples is based on identical pre-sample values from the
original data set as initial values, i.e., z∗−p+1 = z−p+1, . . . , z

∗
0 = z0. The bootstrap is conducted

conditionally on estimated parameters for the relative variances and transition probabilities.
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A.4.4 FEVD for standard proxy-SVAR

Figure A.11: Forecast error variance decomposition for standard proxy-SVAR
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