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Abstract
This paper presents a weighted optimization framework that unifies the binary,

multi-valued, and continuous treatment—as well as mixture of discrete and continuous
treatment—under unconfounded treatment assignment. With a general loss function,
the framework includes the average, quantile and asymmetric least squares causal ef-
fect of treatment as special cases. For this general framework, we first derive the semi-
parametric efficiency bound for the causal effect of treatment, extending the existing
bound results to a wider class of models. We then propose a generalized optimiza-
tion estimator for the causal effect with weights estimated by solving an expanding
set of equations. Under some sufficient conditions, we establish the consistency and
asymptotic normality of the proposed estimator of the causal effect and show that the
estimator attains the semiparametric efficiency bound, thereby extending the existing
literature on efficient estimation of causal effect to a wider class of applications. Fi-
nally, we discuss estimation of some causal effect functionals such as the treatment
effect curve and the average outcome. To evaluate the finite sample performance of
the proposed procedure, we conduct a small-scale simulation study and find that the
proposed estimation has practical value. In an empirical application, we detect a signif-
icant causal effect of political advertisements on campaign contributions in the binary
treatment model, but not in the continuous treatment model.
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1 Introduction

Modeling and estimating the causal effect of certain treatments or policies is of major
interest in economics and social science more generally (see, e.g., Hirano, Imbens, and
Ridder, 2003, Imbens, 2004, Abadie, 2005, Heckman and Vytlacil, 2005, Chernozhukov,
Fernández-Val, and Melly, 2013, Athey, Imbens, and Wager, 2018, Wager and Athey,
2018). Most existing studies focus on the binary treatment where an individual either re-
ceives the treatment or does not, ignoring the treatment intensity. In many applications,
however, the treatment intensity is a part of the treatment, and its causal effect is also of
great interest to decision makers. For example, in evaluating how financial incentives affect
health care providers, the causal effect may depend on not only the introduction of incentive
but also the level of incentive. Similarly, in studying how taxes affect addictive substance
usages, the causal effect may depend not only on the imposition of tax but also on the tax
rate. In finance, there are many plausible examples of interest. For example, in evaluat-
ing the effect of corporate bond purchase schemes on market quality, the causal effect may
depend not just on whether the bond is selected into the scheme but on how much of it is
purchased (see Boneva, Elliott, Kaminska, Linton, McLaren, and Morley, 2018).

In recognition of the importance of the treatment intensity, the binary treatment litera-
ture has been extended to the multi-valued treatment (e.g., Imbens, 2000, Cattaneo, 2010)
and continuous treatment (e.g., Hirano and Imbens, 2004, Imai and van Dyk, 2004, Flo-
rens, Heckman, Meghir, and Vytlacil, 2008, Fong, Hazlett, and Imai, 2018, Yiu and Su,
2018). The parameter of primary interest in this literature is the average causal effect of
treatment, defined as the difference in response to two levels of treatment by the same in-
dividual, averaged over a set of individuals. The identification and estimation difficulty is
that each individual only receives one level of treatment. To overcome this difficulty, re-
searchers impose the unconfounded treatment assignment condition, which allows them to
find statistical matches for each observed individual from all other treatment levels.

The main objective of this paper is to present a weighted optimization estimation
framework that unifies the binary, multi-valued, and continuous treatment—as well as the
mixture of discrete and continuous treatment—and to identify and estimate causal effect
parameters through a population minimization problem under the unconfounded treatment
assignment condition. The weights are called the stabilized weights by Robins, Hernán,
and Brumback (2000) and are defined as the ratio of the marginal probability distribution
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of the treatment status over the conditional probability distribution of the treatment status
given covariates. We first compute the semiparametric efficiency bound (Bickel, Klaassen,
Ritov, and Wellner, 1993) of the causal effect of treatment, extending the results of Hahn
(1998), Firpo (2007), and Cattaneo (2010) from the binary treatment to a variety of treat-
ments and to parameters defined through a population minimization problem. Our bound
reveals that the weighted optimization with known stabilized weights does not produce
efficient estimation since it fails to account for the information restricting the stabilized
weights. This observation was made by Hirano, Imbens, and Ridder (2003) in the binary
treatment case; here we show that their observation holds true for a much wider class of
treatment models. We exploit the information that the stabilized weights satisfy certain mo-
ment conditions (an expanding number thereof) by estimating the stabilized weights from
those equations by a novel entropy maximization method; we then estimate the causal ef-
fect by the generalized optimization method with the true stabilized weights replaced by the
estimated weights. Under some sufficient conditions, we show that our proposed estimator
is consistent and asymptotically normally distributed and, more importantly, it attains the
semiparametric efficiency bound. We propose consistent standard errors based on the same
sieve methodology. We propose a tuning parameter selection methodology to guide the
practical implementation. We also discuss estimation of the full nonparametric effect curve
and establish its pointwise asymptotic normality and uniform consistency.

We next present some simulation evidence that the proposed methodology operates
well in finite samples and is robust to misspecification, whereas the existing methodology
of Fong, Hazlett, and Imai (2018) is somewhat fragile. We apply our methodology to
the study of the effect of political advertisements on campaign contributions using data
considered by Urban and Niebler (2014) and Fong, Hazlett, and Imai (2018). We detect a
significant causal effect of advertisements on contributions in the binary treatment model,
but not in the continuous treatment model. The former result is consistent with Urban and
Niebler (2014), while the latter is consistent with Fong, Hazlett, and Imai (2018).

Literature review. In the binary treatment case with unconfounded treatment assign-
ment, the average causal effect is estimated by the difference of the weighted average re-
sponses with the propensity scores as weights (see, e.g., Rosenbaum and Rubin, 1983,
Hirano, Imbens, and Ridder, 2003). Other popular methods include regression adjustment
(Angrist and Pischke, 2008), matching (Imbens, 2004, Abadie and Imbens, 2006, 2016) ,
imputation (Heckman, Ichimura, and Todd, 1998, Cattaneo and Farrell, 2011), and hybrid
method (Farrell, 2015, Słoczyński and Wooldridge, 2018). The efficiency bound of the av-
erage causal effect in this model is derived by Robins, Rotnitzky, and Zhao (1994) and Hahn
(1998), and efficient estimation is proposed by Robins, Rotnitzky, and Zhao (1994), Hahn
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(1998), Hirano, Imbens, and Ridder (2003), Graham, Pinto, and Egel (2012), and Chan,
Yam, and Zhang (2016). Of particular interest in this literature is the study by Hirano, Im-
bens, and Ridder (2003) which shows that the weighted average difference estimator attains
the semiparametric efficiency bound if the weights are estimated by the empirical likelihood
estimation.

In the multi-valued treatment case, Imbens (2000) generalizes the propensity score,
and Cattaneo (2010) derives the efficiency bound and proposes an estimator that attains the
efficiency bound. In the continuous treatment case, Hirano and Imbens (2004) and Imai and
van Dyk (2004) parameterize the generalized propensity score function and propose a con-
sistent estimator of the average causal effect. Their estimators are not efficient and could
be biased if the generalized propensity score function is misspecified. Florens, Heckman,
Meghir, and Vytlacil (2008) use a control function approach to identify the average causal
effect in the continuous treatment and propose a consistent estimation. It is unclear if their
estimation is efficient. Galvao and Wang (2015) estimate the continuous treatment effect
through stabilized weighting. They do not study how to construct the stabilized weights
such that their estimator is efficient. Kennedy, Ma, McHugh, and Small (2017) propose
a nonparametric kernel estimator for the treatment effects curve, again the efficient esti-
mation is still unclear. Fong, Hazlett, and Imai (2018) propose an estimator of the average
causal effect of continuous treatment but do not establish consistency of their estimation. In
fact, their simulation results indicate their estimation could be seriously biased. Yiu and Su
(2018) study the average causal effect of both discrete and continuous treatment by param-
eterizing the propensity score. Their estimator is generally biased if their parameterization
is incorrect.

In addition to the average causal effect of treatment (ATE), it is also important to in-
vestigate the distributional impact of treatment. For instance, a decision maker may be
interested in the causal effect of a treatment on the outcome dispersion or on the lower tail
of the outcome distribution. Firpo (2007) computes the efficiency bound and proposes an
efficient estimation of quantile causal effect of treatment (QTE) for the binary treatment.
For additional studies on QTE, we refer to Chernozhukov and Hansen (2005), Angrist and
Pischke (2008), and Donald and Hsu (2014).

To the best of our knowledge, we are unaware of any previous work that computes the
efficiency bound and proposes efficient estimation of the causal effect in the continuous
treatment or mixture of discrete and continuous treatment under a general minimization
problem that permits ATE and QTE. The present paper fills this gap rigorously.

The paper is organized as follows. Section 2 sets up the basic framework, Section 3
computes the semiparametric efficiency bound of the causal effect of treatment, Section 4
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presents the generalized optimization estimator, Section 5 establishes the large sample prop-
erties of the proposed estimator. Section 6 constructs confidence intervals based on plug-in
and simulation-based approaches. In Section 7 we propose two data-driven approaches for
selecting tuning parameters. In Section 8 we discuss some extensions. Section 9 reports on
a simulation study, while Section 10 presents an empirical application, followed by some
concluding remarks in Section 11. All technical proofs and extra simulation results are
relegated to the supplemental material Ai, Linton, Motegi, and Zhang (2020).

2 Basic framework and notation

Let T denote the observed treatment status variable with support T ⊂ R, where T is either
a discrete set, a continuum, or a mixture of discrete and continuum subsets, and T has a
marginal probability distribution function FT (t). Let Y ∗(t) denote the potential response
when treatment T = t is assigned. Let L(·) denote a known convex loss function whose
derivative, denoted by L′(·), exists almost everywhere. For the leading part of the paper, we
shall maintain that there exists a parametric causal effect function g(t; β) with the unknown
value β∗ ∈ Rp (with p ∈ N) uniquely solving the minimization problem below, i.e.,

β∗ = argmin
β

∫
T
E [L (Y ∗(t)− g(t;β))] dFT (t). (2.1)

The parameterization of the causal effect is restrictive, but quite common in applications.
Some extensions to the unspecified causal effect function shall be discussed later in the
paper (see Section 8).

Model (2.1) includes many prominent models in the literature as special cases. For ex-
ample, it includes: the average causal effect of binary treatment studied in Hahn (1998) and
Hirano, Imbens, and Ridder (2003) (i.e., T ={0, 1}, L(v) = v2 and g(t; β) = β0 + β1t),
the quantile causal effect of binary treatment studied in Firpo (2007) (i.e., T ={0, 1},
L(v) = v(τ − I(v ≤ 0)) is an almost everywhere differentiable function with τ ∈
(0, 1) and g(t;β) = tβ1 + (1 − t)β0), the average causal effect of multi-valued treat-
ment studied in Cattaneo (2010) (i.e., T ={0, 1, . . . , J} for some J ∈ N, L(v) = v2

and g(t;β) =
∑J

j=0 βjI(t = j)), and the average causal effect of continuous treatment
studied in Hirano and Imbens (2004) (i.e., L(v) = v2 and E[Y ∗(t)] = g(t;β) is a paramet-
ric model indexed by β for the potential outcome means, which is also called a marginal
structural model in Robins, Hernán, and Brumback (2000). Examples include the linear
marginal structure model E[Y ∗(t)] = β0+β1 ·t, and the nonlinear marginal structure model
E[Y ∗(t)] = β0 · t+ 1/(t+ β1)

2 studied in Hirano and Imbens (2004)). It also includes the
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quantile causal effect of multi-valued (i.e., L(v) = v(τ − I(v ≤ 0)) with τ ∈ (0, 1) and
g(t;β) =

∑J
j=0 βjI(t = j)) and continuous treatment (i.e., L(v) = v(τ − I(v ≤ 0)) and

inf {q : P(Y ∗(t) ≥ q) ≤ τ} = g(t;β) is a parametric model indexed by β for the potential
outcome quantiles. Examples include the linear model inf {q : P(Y ∗(t) ≥ q) ≤ τ} = β0 +

β1 · t and the Box-Cox transformation model inf {q : P(Y ∗(t) ≥ q) ≤ τ} = hλ (β0 + β1 · t)
studied in Buchinsky (1995), where hλ(z) = (λz + 1)−1/λ). The latter has so far not
been covered by the existing literature. Moreover, with L(v) = v2 |τ − I(v ≤ 0)|, our
framework covers the asymmetric least squares estimation of the causal effect of (binary,
multi-valued, continuous, mixture of discrete and continuous) treatment. The asymmetric
least squares regression received attention from some noted econometricians (see Newey
and Powell, 1987) but zero attention in the causal effect literature. Our framework can also
accommodate vector-valued treatment T and the inclusion of multiple variables in g(·), al-
though they would add to the dimensionality problem. (We are grateful for an anonymous
referee for pointing out these possible extensions.)

The problem with (2.1) is that the potential outcome Y ∗(t) is not observed for all t.
Let Y := Y ∗(T ) denote the observed response. One may attempt to solve the following
optimization problem:

min
β

E[L(Y − g(T ;β))].

However, if there exists a selection into treatment, the true value β0 does not solve the
above minimization problem. Indeed, in this case, the observed response and treatment
assignment data alone cannot identify β∗. To address this identification issue, studies in
the literature impose a selection on observable condition (e.g., Hirano, Imbens, and Ridder,
2003, Imai and van Dyk, 2004, Fong, Hazlett, and Imai, 2018). Specifically, let X denote
a vector of covariates. The following condition shall be maintained throughout the paper.

Assumption 1 (Unconfounded Treatment Assignment). T is independent of Y ∗(t) for all
t ∈ T given X , i.e., Y ∗(t) ⊥ T |X .

Let FT |X denote the conditional probability distribution of T given the observed co-
variates X and let dFT |X denote the corresponding probability measure. In the literature,
dFT |X is called the generalized propensity score (Hirano and Imbens, 2004, Imai and van
Dyk, 2004). Suppose that dFT |X(T |X) is positive everywhere and let

π0(T,X) :=
dFT (T )

dFT |X(T | X)
.

The function π0(T,X) is called the stabilized weight in Robins, Hernán, and Brumback
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(2000). Under Assumption 1, we obtain

E[π0(T,X)L(Y − g(T ;β))] =

∫
E [L(Y ∗(t)− g(t;β))] dFT (t) (2.2)

(see Appendix A for derivation), and hence the true value β∗ solves the weighted optimiza-
tion problem

β∗ = argmin
β

E[π0(T,X)L(Y − g(T ;β))]. (2.3)

This result is very insightful. It tells us that the selection bias in the unconfounded treatment
assignment can be corrected through covariate-balancing. More importantly, it says that the
true value β∗ can be identified from the observed data. The weighted optimization (2.3)
provides a unified framework for estimating the causal effect of a variety of treatments,
including binary, multi-level, continuous, and mixture of discrete and continuous treatment,
and under a general loss function. The goal of this paper is to compute the semiparametric
efficiency bound and to present an efficient estimator for β∗ under this general framework.

Although the parametric specification of g(t;β) is somewhat restrictive, it is useful
from a practical point of view. First, if T is a discrete variable, model misspecification is
not an issue since the coefficient β∗ has a clear causal interpretation. Second, if T is a
continuous variable, usually a parametric specification may suffer from the model misspec-
ification problem. Since T is univariate, the true response model can be well approximated
through several polynomials of t. Third, a parametric specification of g(t;β) allows us to
infer the parameters at

√
N -consistent rate and to construct the most efficient estimator.

Fourth, the proposed framework (2.1) is more general than the existing literature of con-
tinuous treatment (Hirano and Imbens, 2004, Fong, Hazlett, and Imai, 2018), where either
a regression model E[Y |T,X] or a response model E[T |X] is often required. In Section
8, we also consider fully nonparametric estimation of g(t) under several important cases.
The fully nonparametric estimation of g(t) within the general framework (2.1) is beyond
the scope of this article, and it will be pursued in a future work.

3 Efficiency bound

We begin by applying the approach of Bickel, Klaassen, Ritov, and Wellner (1993) to com-
pute the semiparametric efficiency bound of the parameter β∗ defined by (2.1) under As-
sumption 1. This gives the least possible variance achievable by a regular estimator in the
semiparametric model. The result is presented in the following theorem.
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Theorem 1. Suppose that g(T ;β) is twice differentiable with respect to β in the param-
eter space Θ ⊂ Rp, with m(T ;β∗) := ∇βg(T ;β

∗), and E [L′(Y − g(T ;β))|Y,X] is dif-
ferentiable with respect to β ∈ Θ. Denote ε(T,X;β∗) := E[L′(Y − g(T ;β∗))|T,X],
H0 := −∇βE [π0(T,X)L′(Y − g(T ; β))m(T ;β)]

∣∣
β=β∗ , and

ψ(Y, T,X;β∗) := π0(T, X)m(T ;β∗)L′(Y − g(T ;β∗))− π0(T,X)m(T ;β∗)ε(T,X;β∗)

+ E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|T ] + E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|X] .

Suppose that H0 is nonsingular and E
[
ψ(Y, T,X;β∗)ψ(Y, T,X; β∗)⊤

]
exists and is fi-

nite. Under Assumption 1, namely Y ∗(t) ⊥ T |X for all t ∈ T , and model (2.1), the
efficient influence function of β∗ is given by

Seff (Y, T,X;β∗) = H−1
0 ψ(Y, T,X;β∗).

Consequently, the efficient variance bound of β∗ is

Veff = E
[
Seff (Y, T,X;β∗)Seff (Y, T,X;β∗)⊤

]
. (3.1)

The proof of Theorem 1 is given in the supplemental material Ai, Linton, Motegi, and
Zhang (2020, Section 2.1). It is worth noting that our bound Veff is equal to: the bound of
Hahn (1998) for the case of binary average treatment, the bound of Cattaneo (2010) for the
case of multi-valued average treatment, and the bound of Firpo (2007) for the case of binary
quantile treatment (see Ai, Linton, Motegi, and Zhang, 2020, Sections 2.2-2.4). Moreover,
our bound applies to a much wider class of models, including quantile causal effect of
multi-valued, continuous, and mixture of discrete and continuous treatment as well as the
asymmetric least squares estimation of the causal effect of all kinds of treatments.

Based on the expression of the efficient influence function, many papers construct
an efficient estimator by solving the estimated efficient score equation (Athey, Imbens,
Pham, and Wager, 2017, Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and
Robins, 2018). Such estimators typically have the double or multiple robustness prop-
erty. However, in our case the efficient influence function Seff (T, X, Y ;β) involves five
unknown functionals fT (T ), fT |X(T |X), ε(T,X;β), E[π0(T,X)ε(T,X;β)m(T,β)|T ],
and E[π0(T,X)ε(T,X;β)m(T,β)|X]. Estimation of these functionals is difficult in prac-
tice, and we expect that the finite sample performance of the estimated β∗ would be poor.
Instead of explicitly estimating the efficient influence function Seff , we propose a sim-
ple weighted optimization estimator based on (2.3) by estimating the stabilized weights
π0(T,X). This procedure is remarkably stable numerically and performs well statistically
in small samples as we demonstrate in the Monte Carlo section.
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It is also worth noting that, if the stabilized weights are known and g(t;β∗) is correctly
specified, one can estimate β∗ by solving the sample analogue of the weighted optimization
(2.3). The asymptotic variance of this estimator is

Vineff = E
[
Sineff (Y, T,X;β∗)Sineff (Y, T,X;β∗)⊤

]
,

with
Sineff (Y, T,X;β∗) = H−1

0 · π0(T,X)m(T ;β∗)L′ {Y − g(T ;β∗)} .

It is easy to show that Vineff > Veff (see Proposition C.1 of Appendix C), implying that
the weighted optimization estimator is not efficient. This follows because the weighted
optimization does not account for the restriction on the stabilized weight π0(t,x) that

E [π0(T,X)u(T )v(X)] = E[u(T )] · E[v(X)] (3.2)

holds for any suitable functions u(t) and v(x). Incorporating restriction (3.2) into the es-
timation of the causal effect can improve efficiency. A similar observation was made by
Hirano, Imbens, and Ridder (2003) in the binary treatment. Exactly how to incorporate
restriction (3.2) into the estimation is the subject of the next section.

4 Efficient estimation

One way to incorporate (3.2) into the estimation is to estimate the stabilized weights from
(3.2) and then implement (2.3) with the estimated weights. But before doing so, we must
verify that (3.2) uniquely identifies π0(T,X).

Theorem 2. For any integrable functions u(T ) and v(X), E [π(T,X)u(T )v(X)] = E[u(T )]·
E[v(X)] holds if and only if π(T,X) = π0(T,X) a.s.

The proof is presented in Appendix B. Therefore, condition (3.2) identifies the stabi-
lized weights. The challenge now is that (3.2) implies an infinite number of moment con-
ditions. With a finite sample of observations, it is impossible to solve an infinite number of
equations. To overcome this difficulty, we approximate the (infinite dimensional) function
space with the (finite dimensional) sieve space. Specifically, let uK1(T ) = (uK1,1(T ), . . .

, uK1,K1(T ))
⊤ and vK2(X) = (vK2,1(X), . . . , vK2,K2(X))⊤ denote the known basis func-

tions with dimensions K1 ∈ N and K2 ∈ N respectively, and let K := K1 · K2. The
functions uK1(t) and vK2(x) are called the approximation sieves that can approximate any
suitable functions u(t) and v(x) arbitrarily well (see Newey, 1997, Chen, 2007, for more
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discussion on sieve approximation). Since the sieve approximating space is also a subspace
of the function space, π0(T,X) satisfies

E
[
π0(T,X)uK1(T )vK2(X)⊤

]
= E[uK1(T )] · E[vK2(X)]⊤. (4.1)

Let {Ti,Xi, Yi}Ni=1 denote an independently and identically distributed sample of ob-
servations drawn from the joint distribution of (T,X, Y ). We propose to estimate the stabi-
lized weights πi = π0(Ti,Xi) by solving the entropy maximization problem max

{
−
∑N

i=1 πi log πi

}
subject to 1

N

∑N
i=1 πiuK1(Ti)vK2(Xi)

⊤ =
(

1
N

∑N
i=1 uK1(Ti)

)(
1
N

∑N
j=1 vK2(Xj)

⊤
)
.

(4.2)
Noting

∑N
i=1N

−1πi = 1 (since both uK1(T ) and vK2(X) contain the constant 1) and

max

{
−

N∑
i=1

πi log πi

}
= −min

{
N∑
i=1

{N−1πi} · log
N−1πi
N−1

}
,

the formulation (4.2) can be interpreted as the minimization of the Kullback-Leibler di-
vergence between the estimated weights {N−1πi}Ni=1 and the empirical frequencies {N−1}
subject to the empirical moment constraints (4.1). This idea is similar to the exponential
tilting (ET) idea developed in Kitamura and Stutzer (1997) and Imbens, Spady, and John-
son (1998). The difference is that they consider a parametric problem and we consider a
nonparametric problem.

The primal problem (4.2) is hard to solve numerically. We instead consider its dual
problem, which can be solved by numerically efficient and stable algorithms. Specifically,
let ρ(v) := −e−v−1 for any v ∈ R, by Tseng and Bertsekas (1991), we can show that the
dual solution is given by

π̂K(Ti,Xi) := ρ′
(
uK1(Ti)

⊤Λ̂K1×K2vK2(Xi)
)
, (4.3)

where Λ̂K1×K2 is the maximizer of the strictly concave function ĜK1×K2 defined by

Λ̂K1×K2
= argmax

Λ
ĜK1×K2

(Λ) :=
1

N

N∑
i=1

ρ
(
uK1

(Ti)
⊤ΛvK2

(Xi)
)
−

(
1

N

N∑
i=1

uK1
(Ti)

)⊤

Λ

 1

N

N∑
j=1

vK2
(Xj)

 .

(4.4)

By the first order condition, the constraints of (4.2) are automatically satisfied by {π̂K(Ti,Xi)}Ni=1.
The duality between (4.2) and (4.4) is shown in Appendix D. Having estimated the weights,
we now estimate β∗ by solving the generalized optimization problem, that is,

β̂ = argmin
β

N∑
i=1

π̂K(Ti,Xi)L (Yi − g(Ti;β)) . (4.5)
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Remarks:

1. Alternatively, one can estimate the stabilized weights by estimating the generalized
propensity score function as well as the marginal distribution of the treatment variable
nonparametrically (e.g., kernel estimation). But these alternative estimated weights
do not satisfy the empirical moment condition in (4.2). Kang and Schafer (2007)
argued that the inverse probability weighting method is likely to produce extreme
weights and unstable estimates. If the number of moment restrictions (i.e., K) is
large enough, our method is unlikely to produce extreme weights, thereby improving
the finite sample performance of β̂. See Imai and Ratkovic (2014) for simulation evi-
dence on how the covariate balancing method dramatically improves the poor perfor-
mance of the propensity score matching and weighting estimator, reported by Smith
and Todd (2005) and Kang and Schafer (2007).

2. The primal problem (4.2) is different from the empirical likelihood approach (Smith,
1997, Imbens, 2002). Notice that ρ(v) = −e−v−1 satisfies the invariance property
(i.e., −ρ′′(v) = ρ′(v)). It turns out that this invariance property is critical for es-
tablishing consistency of the generalized optimization estimator. Any other choice
of ρ(·) that does not have the invariance property may result in biased causal effect
estimation.

3. The proposed estimation (4.5) is a semiparametric estimation problem that contains
both finite dimensional and infinite unknown parameters. The general semiparametric
estimation problem has been studied by Ai and Chen (2003) and Chen, Linton, and
Van Keilegom (2003). Ai and Chen (2003) study the large sample properties in the
smooth objective function case, while Chen, Linton, and Van Keilegom (2003) extend
the analysis to criterion functions that are not necessarily smooth. Equation (4.5) is
a special case of the general setting of Chen, Linton, and Van Keilegom (2003), and
we will indeed apply their Theorem 2 (page 1594) to derive the asymptotic properties
of β̂. There is a major difference between the present paper and Chen, Linton, and
Van Keilegom (2003), however. Our focus is on the efficiency bound derivation and
efficient estimation, whereas their focus is on deriving the asymptotic properties of
the sequential estimator under high level conditions (e.g., Condition 2.6, page 1594).
These high level conditions are nontrivial to verify. Most of our derivations are indeed
verifying those high level conditions; see Section 4.2 of the supplemental material Ai,
Linton, Motegi, and Zhang (2020).
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Related methods

In the binary treatment effect model with T ∈ {0, 1}, the propensity score is defined by
π(X) := P (T = 1|X). Hirano, Imbens, and Ridder (2003) estimate the propensity score
function by fitting a logit regression for T onto uK(X). As K increases to infinity, their
estimator attains the efficiency bound of ATE developed by Hahn (1998).

The propensity score satisfies the following covariate balancing equation:

E
[
T · π(X)−1v(X)

]
= E[v(X)]. (4.6)

Based on (4.6), various estimators of average treatment effects have been proposed in the
existing literature. Graham, Pinto, and Egel (2012) parametrically model the propensity
score π(X) = π(γ⊤v∗(X)) by a finite dimensional parameter γ and known v∗(X). They
estimate γ by solving the empirical moment of (4.6) with v(X) = v∗(X). Their estima-
tor attains the efficiency bound if both the propensity score function is correctly specified
and the conditional potential outcomes {E[Y ∗(t)|X], t ∈ {0, 1}} are linear function of
v∗(X). Imai and Ratkovic (2014) parametrically model the propensity score by π(X; γ)

and consider the overidentified moment condition with v(X) = vK(X) being a specified
K-dimensional vector of covariates, where K is possibly larger than the dimension of γ.
They propose to estimate γ through generalized method of moments (GMM) and empiri-
cal likelihood (EL). We note neither GMM nor EL leads to the empirical moment of (4.6)
because both of them are defined to be the maximizer of certain criterion functions rather
than directly solving the empirical moment of (4.6). In addition, the estimation of Imai and
Ratkovic (2014) is not guaranteed to attain the efficiency bound of ATE developed by Hahn
(1998).

Fong, Hazlett, and Imai (2018) extend the covariate balancing propensity score ap-
proach to a continuous treatment by noticing the moment condition

E [π(T,X) · {T − E[T ]} · {X − E[X]}] = 0. (4.7)

They consider estimating the stabilized weights by balancing covariates such that weighted
correlation between T and X is minimized. However, the equation (4.7) is of finite di-
mension and cannot identify π(T,X). Hence, Fong, Hazlett, and Imai (2018) impose a
parametric model for the stabilized weights in order to achieve consistent estimation.

5 Large sample properties

To establish the large sample properties of the generalized optimization estimator, we first
show that the estimated weight function π̂K(t,x) is consistent and compute its convergence
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rates under both the L∞ norm and the L2 norm. The following conditions shall be imposed.

Assumption 2. (i) The support X of X is a compact subset of Rr. The support T of the
treatment variable T is a compact subset of R. (ii) There exist two positive constants η1 and
η2 such that

0 < η1 ≤ π0(t,x) ≤ η2 <∞ , ∀(t,x) ∈ T × X .

Assumption 3. There exist ΛK1×K2 ∈ RK1×K2 and a positive constant α > 0 such that

sup
(t,x)∈T ×X

∣∣(ρ′−1 (π0(t,x))− uK1(t)
⊤ΛK1×K2vK2(x)

∣∣ = O(K−α),

where ρ(v) = − exp(−v − 1).

Assumption 4. (i) For every K1 and K2, the smallest eigenvalues of E
[
uK1(T )uK1(T )

⊤]
and E

[
vK2(X)vK2(X)⊤

]
are bounded away from zero uniformly in K1 and K2. (ii) There

are two sequences of constants ζ1(K1) and ζ2(K2) satisfying supt∈T ∥uK1(t)∥ ≤ ζ1(K1)

and supx∈X ∥vK2(x)∥ ≤ ζ2(K2), K = K1(N)K2(N) and ζ(K) := ζ1(K1)ζ2(K2), such
that ζ(K)K−α → 0 and ζ(K)

√
K/N → 0 as N → ∞.

Assumption 2 (i) restricts both the covariates and treatment level to be bounded. This
condition is restrictive but convenient for computing the convergence rate under L∞ norm.
It is commonly imposed in the nonparametric regression literature. This condition can
be relaxed, however, if we restrict the tail behavior of the joint distribution of (X, T ).
Assumption 2 (ii) restricts the weight function to be bounded and bounded away from zero.
Given Assumption 2 (i), this condition is equivalent to dFT |X(T |X) being bounded away
from zero, meaning that each type of individual (denoted by X) always have a sufficient
portion participating in each level of treatment. This restriction is important for our analysis
since each individual participates only in one level of treatment and this condition allows us
to construct her statistical counterparts from all other treatments. Although Assumption 2
(ii) is useful in causal analysis and establishing the convergence rates, it is not essential and
could be relaxed by allowing η1 (resp. η2) to depend on N and to go to zero (resp. infinity)
slowly, as N → ∞. Notice that uK1(t)

⊤ΛvK2(x) is a linear sieve approximation to any
suitable function of (X, T ).

Assumption 3 requires the sieve approximation error of ρ′−1 (π0(t,x)) to shrink at
a polynomial rate. This condition is satisfied for a variety of sieve basis functions. For
example, if both X and T are discrete, then the approximation error is zero for sufficiently
large K and in this case Assumption 3 is satisfied with α = +∞. If some components
of (X, T ) are continuous, the polynomial rate depends positively on the smoothness of
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ρ′−1 (π0(t,x)) in continuous components and negatively on the number of the continuous
components; indeed, for power series and B-splines, α = −s/r, where s is the smoothness
of approximand and r is the dimension of X . Hence, the proposed method still suffers
from the curse of dimensionality that typically occurs in nonparametric estimation. We will
show that the convergence rate of the estimated weight function (and consequently the rate
of the generalized optimization estimator) is bounded by this polynomial rate.

Assumption 4 (i) essentially ensures the sieve approximation estimator is non-degenerate.
Similar conditions are common in the sieve regression literature (Andrews, 1991, Newey,
1997). If the approximation error is nonzero, Assumption 4 (ii) requires it to shrink to zero
at an appropriate rate as the sample size increases. Newey (1997) show that if uK1(t) (resp.
uK2(x)) is a power series then ζ1(K1) = O(K1) (resp. ζ2(K2) = O(K2)), and if uK1(t)

(resp. uK2(x)) is a B-spline then ζ1(K1) = O(
√
K1) (resp. ζ2(K2) = O(

√
K2)).

Under these conditions, we are able to establish the following theorem:

Theorem 3. Suppose that Assumptions 2-4 hold. Then, we obtain the following:∫
T ×X

|π̂K(t,x)− π0(t,x)|2dFT,X(t,x) = Op

(
max

{
K−2α,

K

N

})
,

1

N

N∑
i=1

|π̂K(Ti,Xi)− π0(Ti,Xi)|2 = Op

(
max

{
K−2α,

K

N

})
.

The proof of Theorem 3 immediately follows from the supplemental material Ai, Lin-
ton, Motegi, and Zhang (2020, Lemma 3.1 & Corollary 3.3).

The following additional condition is needed to establish the consistency of the pro-
posed estimator β̂.

Assumption 5. (i) The parameter space Θ ⊂ Rp is a compact set and the true param-
eter β∗ is in the interior of Θ , where p ∈ N. (ii) L (Y − g(T ;β)) is continuous in β,
supβ∈Θ E [|L (Y − g(T ;β)) |2] <∞ and E

[
supβ∈Θ |L (Y − g(T ;β)) |

]
<∞.

Assumption 5 (i) is commonly imposed in the nonlinear regression literature, but can
be relaxed if g(t;β) is linear in β. Assumption 5 (ii) is an envelope condition that is
sufficient for the applicability of the uniform law of large numbers. A similar condition is
also imposed in Newey and McFadden (1994, Lemma 2.4).

Under these and other conditions, we establish the consistency of the generalized op-
timization estimator. The proof of Theorem 4 is given in the supplemental material Ai,
Linton, Motegi, and Zhang (2020, Section 4.1)

Theorem 4. Suppose that Assumptions 1-5 hold. Then, ∥β̂ − β∗∥ p−→ 0.
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To establish the asymptotic distribution of the proposed estimator, we need some smooth-
ness condition on the regression function and some under-smoothing condition on the sieve
approximation (i.e., larger K than needed for consistency). We also have to address the
possibility of a nonsmooth loss function. These conditions are presented below.

Assumption 6.

(i) The loss function L(v) is differentiable almost everywhere, g(t;β) is twice contin-
uously differentiable in β ∈ Θ and we denote its first derivative by m(t;β) :=

∇βg(t;β);

(ii) E [π0(T,X)L′(Y − g(T ;β))m(T ;β)] is differentiable with respect to β and H0 :=

−∇βE [π0(T,X)L′(Y − g(T ;β))m(T ; β)]
∣∣∣
β=β∗

is nonsingular;

(iii) ε(t,x;β∗) := E[L′(Y − g(T ;β∗))|T = t,X = x] is continuously differentiable in
(t,x);

(iv) Suppose that N−1
∑N

i=1 π̂K(Ti,Xi)L
′(Yi − g(Ti; β̂))m(Ti; β̂) = op(N

−1/2) holds
with probability approaching one.

Assumption 7. (i) E
[
supβ∈Θ |L′(Y − g(T ;β))|2+δ

]
< ∞ for some δ > 0; (ii) The func-

tion class {L′(y − g(t; β)) : β ∈ Θ} satisfies:

E

[
sup

β1:∥β1−β∥<δ

|L′(Y − g(T ; β1))− L′(Y − g(T ;β))|2
]1/2

≤ a · δb

for any β ∈ Θ and any small δ > 0 and for some finite positive constants a and b.

Assumption 6 (i) imposes sufficient regularity conditions on both the regression func-
tion and the loss function. These conditions permit nonsmooth loss functions and are sat-
isfied by the examples mentioned in previous sections. Assumption 6 (ii) ensures that the
efficient variance to be finite. Assumption 6 (iv) is essentially saying that the almost sure
first order condition is approximately satisfied, see Pakes and Pollard (1989). Assumption
7 is a stochastic equicontinuity condition, which is needed for establishing weak conver-
gence, see Andrews (1994). Again, it is satisfied by widely used loss functions such as
L(v) = v2, L(v) = v{τ − I(v ≤ 0)}, and L(v) = v2 · |τ − I(v ≤ 0)| discussed in Section
2.

Under the above sufficient conditions, we have the following theorem.
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Theorem 5. Suppose that Assumptions 1-7 hold, and strengthen Assumption 4 (ii) to

Assumption 4 (ii)′ ζ(K)
√
K2/N → 0 and

√
NK−α → 0.

Then,
√
N(β̂−β∗)

d−→ N(0, Veff ), where Veff = E
[
Seff (T,X, Y ;β∗)Seff (T,X, Y ;β∗)⊤

]
.

Therefore, β̂ attains the semi-parametric efficiency bound of Theorem 1.

Assumption 4 (ii)′ imposes further restrictions on the smoothing parameter (K) so that
the sieve approximation is under-smoothed. This condition is stronger than Assumption
4 (ii) but it is commonly imposed in the semiparametric regression literature. The proof
of Theorem 5 is given in the supplemental material Ai, Linton, Motegi, and Zhang (2020,
Section 4).

6 Confidence interval and variance estimation

The asymptotic normality of β̂ = (β̂0, β̂1, ..., β̂p−1)
⊤ established in Theorem 5 has a direct

implication for constructing the confidence interval of β∗ = (β∗
0 , β

∗
1 , ...., β

∗
p−1)

⊤. The 95%
symmetric confidence interval for β∗

j is given by[
β̂j − 1.96 · ŜEj, β̂j + 1.96 · ŜEj

]
, (6.1)

where ŜEj = V̂
1/2
jj /

√
N is the standard error of β̂j, and V̂jj is a consistent estimator for

Vjj . Here, Vij denotes the (i, j)-element of Veff , the asymptotic covariance matrix of the
estimator (recall (3.1)). Broadly, there are two approaches for computing the standard er-
ror ŜEj: plug-in and simulation-based approaches. The plug-in approach is described in
Section 6.1, and the simulation-based approach is described in Section 6.2.

6.1 Plug-in approach

The plug-in approach is a conceptually straightforward approach which estimates Veff by
replacing unknown quantities in (3.1) with consistent estimators. This approach requires the
consistent estimation of H0 and ψ(Y, T,X;β∗) (recall Theorem 1). Since the nonsmooth
loss function may invalidate the exchangeability between the expectation and derivative
operators, some care in the estimation of H0 is warranted. Using the tower property of
conditional expectation, H0 can be rewritten as follows.

H0 =−∇βE [π0(T,X)E [L′(Y − g(T ;β))|T,X]m(T ;β)]
∣∣∣
β=β∗
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=− E
[
π0(T,X)∇βE [L′(Y − g(T ;β))|T,X]

∣∣∣
β=β∗

m(T ;β∗)⊤
]

− E [π0(T,X)E [L′(Y − g(T ;β∗))|T,X]∇βm(T ;β∗)] .

Applying integration by parts (see Appendix E), we obtain

∇βE [L′(Y − g(T ;β))|T = t,X = x]
∣∣∣
β=β∗

=E
[
L′(Y − g(T ;β∗))

∂

∂y
log fY,T,X(Y, T,X)

∣∣∣∣T = t,X = x

]
m(t;β∗) (6.2)

and consequently

H0 = −E
[
π0(T,X)L′(Y − g(T ;β∗))

{
∂

∂y
log fY,T,X(Y, T,X)m(T ;β∗)m(T ;β)⊤ +∇βm(T ;β∗)⊤

}]
.

The log density log fY,T,X(y, t,x) can be estimated via the widely used sieve extremum
estimator (Chen, 2007, Example 2.6, page 5565):

f̂Y,T,X(y, t,x) :=
exp

(
â⊤K0

rK0(y, t,x)
)∫

Y×T ×X exp
(
â⊤K0

rK0(y, t,x)
)
dydtdx

,

where âK0 ∈ RK0 (K0 ∈ N) maximizes the following concave objective function

âK0 := arg max
a∈RK0

1

N

N∑
i=1

[
a⊤rK0(Yi, Ti,Xi)− log

∫
Y×T ×X

exp
(
a⊤rK0(y, t,x)

)
dydtdx

]
,

and rK0(t, y,x) is a K0-dimensional sieve basis. Then, H0 can be estimated by

Ĥ := − 1

N

N∑
i=1

π̂K(Ti,Xi)L
′(Yi−g(Ti; β̂))

{
â⊤K0

∂

∂y
rK0(Yi, Ti,Xi)m(Ti; β̂)m(Ti; β̂)

⊤ +∇βm(Ti; β̂)

}
.

Also, ψ(Y, T,X;β∗) can be directly estimated by the plug-in sieve estimator:

ψ̂(Y, T,X; β̂) = π̂K(T,X)L′(Y − g(T ; β̂))m(T ; β̂)− π̂K(t,x)Ê
[
L′(Y − g(T ; β̂))|T,X

]
m(T ; β̂)

+ Ê
[
π̂K(T,X)L′(Y − g(T ; β̂))|T

]
m(T ; β̂) + Ê

[
π̂K(T,X)L′(Y − g(T ; β̂))|X

]
m(T ; β̂),

where Ê[π̂K(T,X)L′(Y−g(T ; β̂))|T,X] is the least square regression of π̂K(T,X)L′(Y−
g(T ; β̂)) on a sieve basis wK0(T,X); Ê[L′(Y − g(T ; β̂))|T ] and Ê[π̂K(T,X)L′(Y −
g(T ; β̂))|X] are defined similarly.

Finally, a consistent estimator of Veff is given by

V̂ := Ĥ−1

{
1

N

N∑
i=1

ψ̂(Yi, Ti,Xi; β̂)ψ̂(Yi, Ti,Xi; β̂)
⊤

}
(Ĥ⊤)−1. (6.3)

The sieve extreme estimator is uniformly strong consistent in the almost sure sense (see
Chen, 2007, Theorem 3.1). Also from Theorems 3 and 4, we have sup(t,x)∈T ×X |π̂K(t,x)−
π0(t,x)| = op(1) and ∥β̂−β∗∥ → 0. With these results, the consistency of V̂ follows from
standard arguments.
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6.2 Simulation-based approach

The plug-in approach described in Section 6.1 is conceptually straightforward, but may be
hard to implement from a practical point of view. In this section, we describe the Jackknife
and bootstrap methods as alternative approaches. First, the Jackknife method proceeds as
follows (Wasserman, 2013). The ith Jackknife sample is constructed by deleting the ith

observation from the dataset:

J [−i] := {Tj,Xj, Yj : j ∈ {1, 2, ..., i− 1, i+ 1, ..., N}} .

The ith Jackknife replicate, denoted as β̂[−i] = (β̂
[−i]
0 , β̂

[−i]
1 , ..., β̂

[−i]
p−1)

⊤, is defined as the
point estimator for β∗ computed on the ith Jackknife sample J[−i]. The Jackknife-based
standard error of estimated β∗

j is given by

ŜE
jack

j =

{
N − 1

N

N∑
i=1

(
β̂
[−i]
j − β̂

[·]
j

)2} 1
2

, (6.4)

where β̂[·]
j = N−1

∑N
i=1 β̂

[−i]
j . Substitute (6.4) into (6.1) to compute the confidence interval.

Second, the bootstrap method proceeds as follows. The bth bootstrap sample {T {b}
i ,X

{b}
i , Y

{b}
i }Ni=1

is resampled with replacement from the original sample {Ti,Xi, Yi}Ni=1 with the uniform
probability. The bth bootstrap replicate, denoted by β̂{b} = (β̂

{b}
0 , β̂

{b}
1 , ..., β̂

{b}
p−1)

⊤, is de-
fined as the point estimator for β∗ computed on the bth bootstrap sample. Repeat B times
to get {β̂{b}}Bb=1. The bootstrapped standard error of estimated β∗

j is given by

ŜE
boot

j =

{
1

B

B∑
b=1

(
β̂
{b}
j − β̂

{·}
j

)2} 1
2

, (6.5)

where β̂{·}
j = B−1

∑B
b=1 β̂

{b}
j . Substitute (6.5) into (6.1) to compute the confidence interval.

(An alternative bootstrap approach can be found in Chen, Linton, and Van Keilegom, 2003,
Section 3.3).

Bootstrapping provides another way to construct a confidence interval. Sort the B
bootstrap replicates from the smallest to the largest, and relabel them as β̂(1)

j ≤ · · · ≤ β̂
(B)
j .

The 95% bootstrapped equitailed confidence interval for β∗
j is given by[

β̂
(0.025B)
j , β̂

(0.975B)
j

]
. (6.6)

The entire confidence interval (6.1) can be replaced with (6.6). The former bootstrap ap-
proach (6.5) relies on the asymptotic normality result, while the latter approach (6.6) does
not. We distinguish them hereafter, calling the former bootstrap method I and the latter
bootstrap method II.
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7 Selection of tuning parameters

The large sample properties of the proposed estimator permit a wide range of values of
K1 and K2. This presents a dilemma for applied researchers who have only one finite
sample and would like to have some guidance on the selection of smoothing parameters.
Several data-driven methods for selecting tuning parameters in series estimation have been
discussed in Li (1987) and Li and Racine (2007, Section 15.2). Based on that background,
we present two data-driven approaches to select K1 and K2. The first one is simply to
minimize a (penalized) loss function. Define L̄(K1, K2) := N−1

∑N
i=1 π̂K(Ti,Xi)L(Yi −

g(Ti; β̂)). There are several ways to penalize using large K1 or K2:

No penalty. L(K1, K2) = L̄(K1, K2).

Additive penalty. L(K1, K2) = (1 + 2(K1 +K2)/N)× L̄(K1, K2).

Multiplicative penalty. L(K1, K2) = (1 + 2K1K2/N)× L̄(K1, K2).

Choose (K∗
1 , K

∗
2) that minimizes L(K1, K2) in some choice sets (K1, K2) ∈ K1×K2.

The second approach is the J-fold cross-validation (CV), which proceeds as follows.

1. Divide N samples into J groups, (say J = 5 or 10), and let n = N/J . The data in
the jth group is denoted by Sj = {X(j)

i , T
(j)
i , Y

(j)
i : i = 1, ..., n} for j ∈ {1, .., J}.

2. For each j ∈ {1, ..., J}, compute the following quantities based on the dataset S(−j) =
{Xi, Ti, Yi}Ni=1/Sj:

Λ̂
(−j)
K1×K2

= argmax
Λ

Ĝ
(−j)
K (Λ)

=
1

N − n

∑
i∈S(−j)

ρ
(
u⊤K1

(Ti)ΛvK2
(Xi)

)
−

 1

N − n

∑
i∈S(−j)

u⊤K1
(Ti)

Λ

 1

N − n

∑
i∈S(−j)

vK2
(Xi)

 ,
π̂
(−j)
K (T,X) = ρ′

(
u⊤K1

(T )Λ̂
(−j)
K1×K2

vK2
(X)

)
,

β̂
(−j)
K = argmin

∑
i∈S(−j)

π̂
(−j)
K (Ti,Xi) {Yi − g(Ti;β)}2 .

3. Choose optimal K1 and K2 so that the following cross-validation criterion is mini-
mized:

CV (K1, K2) =
J∑

j=1

∑
k∈Sj

π̂
(−j)
K (Tk,Xk)

{
Yk − g

(
Tk; β̂

(−j)
K

)}2

 .
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When J = N , the second approach coincides with the leave-out cross-validation
(Stone, 1974). Li (1987) shows that the above procedures to select K1 and K2 are asymp-
totically optimal in the sense of minimizing a weighted loss function for regression.

It should be noted that the K1 and K2 chosen by the above criteria are not guaranteed
to satisfy the undersmoothing conditions Assumption 4 (ii′), which has been pointed out by
Li and Racine (2007, Section 15.2). Linton (1995) and Donald and Newey (2001) develop
second order theory to determine the optimal tuning parameters with respect to higher order
MSE for a class of semiparametric estimation problems. In general, the optimal rates for
K1 and K2 according to this criterion are larger reflecting the need for undersmoothing.
This suggests that in practice one should take the K1 and K2 determined by CV or L as a
lower bound.

8 Some extensions

The condition (2.1) that the causal effect is parameterized may be restrictive for some ap-
plications. To relax this condition, we can consider the nonparametric specification

min
g(·)

∫
T
E [L (Y ∗(t)− g(t))] dFT (t).

Under Assumption 1, the above optimization is equivalent to

min
g(·)

E [π0(T,X)L(Y − g(T ))] .

We can estimate g(·) through the weighted nonparametric sieve regression:

min
g(·)∈HK1

N∑
i=1

π̂K(Ti,Xi)L(Yi − g(Ti)),

where HK1 :=
{
g(·) : T → R, g(t) = λ⊤uK1(t) : λ ∈ RK1

}
is a specified sieve space.

The extension to the general loss function requires considerable derivation and shall be
dealt with in a separate paper. In this section, we only consider three specific cases: first, the
dose-response curve θt := E[Y ∗(t)], which corresponds to L(v) = v2; second, the average
treatment effects (ATE), which is defined by θt1,t0 := E[Y ∗(t1) − Y ∗(t0)] for t1 ̸= t0;
third, the average treatment effects on the treated (ATT), which is defined by θt1,t0|t0 :=

E[Y ∗(t1)− Y ∗(t0)|T = t0] for t1 ̸= t0.
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8.1 Estimation of effect curve and average treatment effects

We begin with estimation of θt. Note that, for all t ∈ T and under Assumption 1, we can
rewrite θt as

θt := E[Y ∗(t)] = E [π0(T,X)Y |T = t] .

With π0(T,X) replaced by π̂K(T,X), we estimate θt by regressing π̂K(T,X)Y on uK1(t),
thus

θ̂t :=

[
N∑
i=1

π̂K(Ti,Xi)YiuK1(Ti)
⊤

][
N∑
i=1

uK1(Ti)uK1(Ti)
⊤

]−1

uK1(t).

To aid presentation of the asymptotic properties of θ̂t, define the following quantities:

ΦK1×K1 := E[uK1(T )u
⊤
K1
(T )],

bK1(Ti,Xi, Yi) := π0(Ti,Xi)Yi · uK1(Ti)− E [π0(Ti,Xi)Yi · uK1(Ti)|Ti,Xi]

+ E [π0(Ti,Xi)Yi · uK1(Ti)|Xi]− E [π0(Ti,Xi)Yi · uK1(Ti)] ,

Vt := E
[{
u⊤K1

(t)Φ−1
K1×K1

bK1(Ti,Xi, Yi)
}2]

= u⊤K1
(t) · Φ−1

K1×K1
· E
[
bK1(Ti,Xi, Yi)b

⊤
K1
(Ti,Xi, Yi)

]
· Φ−1

K1×K1
· uK1(t).

Theorem 6. Suppose supt∈T |θt − (γ∗)⊤uK1(t)| = O(K−α̃
1 ) holds for some α̃ > 0 and

γ∗ ∈ RK1 , λmin

{
E
[
bK1(T,X, Y )b⊤K1

(T,X, Y )
]}

≥ c > 0, and Assumptions 1-4 hold.
Then:

1. (Consistency)∫
T
|θ̂t − θt|2dFT (t) = Op

(
ζ(K)2

{
K

N
+K−2α

}
+K−2α̃

1

)
.

sup
t∈T

|θ̂t − θt| = Op

(
ζ1(K1)

{
ζ(K)

(√
K

N
+K−α

)
+K−α̃

1

})
.

2. (Asymptotic Normality) suppose Assumption 4’ and
√
NK−α̃

1 → 0 hold. Then for
any fixed t ∈ T , √

NV
−1/2
t

[
θ̂t − θt

]
d−→ N(0, 1).

See Ai, Linton, Motegi, and Zhang (2020, Section 5.1) for a proof of Theorem 6.
The proposed estimation procedure can also be used to estimate the average treatment

effects (ATE) which is defined by

θt1,t0 := E[Y ∗(t1)− Y ∗(t0)] = θt1 − θt0 for t1 ̸= t0.
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The estimator of θt1,t0 is defined by θ̂t1,t0 := θ̂t1 − θ̂t0 . Let

Vt1,t0 := E
[{
u⊤K1

(t1)Φ
−1
K1×K1

bK1(Ti,Xi, Yi)− u⊤K1
(t0)Φ

−1
K1×K1

bK1(Ti,Xi, Yi)
}2
]

= {uK1(t1)− uK1(t0)}
⊤Φ−1

K1×K1
E
[
bK1(Ti,Xi, Yi)b

⊤
K1

(Ti,Xi, Yi)
]
Φ−1
K1×K1

{uK1(t1)− uK1(t0)} .

Similar to prove Theorem 6, we have the following corollary:

Corollary 7. Suppose supt∈T |θt − (γ∗)⊤uK1(t)| = O(K−α̃
1 ) holds for some α̃ > 0 and

γ∗ ∈ RK1 , λmin

{
E
[
bK1(T,X, Y )b⊤K1

(T,X, Y )
]}

≥ c > 0, Assumptions 1-4’ hold, and√
NK−α̃

1 → 0. Then √
NV

−1/2
t1,t0

[
θ̂t1,t0 − θt1,t0

]
d−→ N(0, 1).

Feasible versions of the above CLT’s are implemented using plug-in sieve estimation
of the unknown quantities. For example, Vt can be estimated by

V̂t =
1

N

N∑
i=1

{
u⊤K1

(t)Φ̂−1
K1×K1

b̂K1(Ti,Xi, Yi)
}2

,

where Φ̂K1×K1 := N−1
∑N

i=1 uK1(Ti)u
⊤
K1
(Ti),

b̂K1(Ti,Xi, Yi) : = π̂K(Ti,Xi)Yi · uK1(Ti)− Ê [π̂K(Ti,Xi)Yi · uK1(Ti)|Ti,Xi]

+ Ê[π̂K(Ti,Xi)Yi · uK1(Ti)|Xi]− Ê[π̂K(Ti,Xi)Yi · uK1(Ti)]

is the plug-in estimates of bK1(Ti,Xi, Yi), and Ê[π̂K(T,X)Y uK1(T )|T,X] is the least
square regression of π̂K(T,X)Y uK1(T ) on a sieve basis wK0(T,X), and Ê[π̂K(T,X)Y

uK1(T )|X] is the least square regression of π̂K(T,X)Y uK1(T ) on a sieve basis vK0(X).

8.2 Average treatment effects on the treated

Another important parameter for program evaluation is the average treatment effects on the
treated (ATT), which is defined by

θt1,t0|t0 := E [Y ∗(t1)− Y ∗(t0)|T = t0] ≡ θt1|t0 − θt0|t0 for t1 ̸= t0.

Note that θt0|t0 = E[Y ∗(t0)|T = t0] = E[Y |T = t0], so it can be estimated by regressing Y
on uK1(t0):

θ̂t0|t0 :=

[
N∑
i=1

Yi · u⊤K1
(Ti)

][
N∑
i=1

uK1(Ti)u
⊤
K1
(Ti)

]−1

uK1(t0).
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The difficulty is to estimate θt1|t0 = E[Y ∗(t1)|T = t0] owing to that Y ∗(t1) cannot be
observed under the treatment level T = t0 . Under Assumption 1, θt1|t0 can be identified as
follows:

θt1|t0 =E [Y ∗(t1)|T = t0] = E [E[Y ∗(t1)|X, T = t0]|T = t0]

=E [E[Y ∗(t1)|X, T = t1]|T = t0] (by Assumption 1)

=

∫
E[Y |X = x, T = t1] ·

fX|T (x|t0)
fX|T (x|t1)

· fX|T (x|t1)dx

=

∫
E[Y |X = x, T = t1] ·

fT (t1)/fT |X(t1|x)
fT (t0)/fT |X(t0|x)

· fX|T (x|t1)dx

=E
[
π0(T,X)

π0(t0,X)
· Y
∣∣∣∣T = t1

]
=E

[
π0(T,X)

π0(T − δ,X)
· Y
∣∣∣∣T = t1

]
, (8.1)

where δ := t1− t0. Based on (8.1), we replace π0(·) by the estimator π̂K(·) then apply sieve
regression on uK1(t1), so that θt1|t0 can be estimated by

θ̂t1|t0 :=

[
N∑
i=1

π̂K(Ti,Xi)

π̂K(Ti − δ,Xi)
· Yi · u⊤K1

(Ti)

][
N∑
i=1

uK1(Ti)u
⊤
K1
(Ti)

]−1

uK1(t1).

Therefore, θt1,t0|t0 can be estimated by

θ̂t1,t0|t0 := θ̂t1|t0 − θ̂t0|t0 .

To aid presentation of the asymptotic properties of θ̂t1|t0 , define the following quanti-
ties:

b1,K1(Ti,Xi, Yi) :=
fT (Ti + δ)

fT (Ti)
· E[Y |T = Ti + δ,X = Xi] · uK1(Ti + δ)

− E
[
fT (Ti + δ)

fT (Ti)
· E[Y |T = Ti + δ,X = Xi] · uK1(Ti + δ)

∣∣∣∣Xi

]
− E

[
fT (Ti + δ)

fT (Ti)
· E[Y |T = Ti + δ,X = Xi] · uK1(Ti + δ)

∣∣∣∣Ti]
+ E

[
fT (Ti + δ)

fT (Ti)
· E[Y |T = Ti + δ,X = Xi] · uK1(Ti + δ)

]
,

b2,K1(Ti,Xi, Yi) :=
π0(Ti,Xi)

π0(Ti − δ,Xi)
· Yi · uK1(Ti)− E

[
π0(Ti,Xi)

π0(Ti − δ,Xi)
· Yi · uK1(Ti)

∣∣∣∣Ti,Xi

]
+ E

[
π0(Ti,Xi)

π0(Ti − δ,Xi)
· Yi · uK1(Ti)

∣∣∣∣Xi

]
− E

[
π0(Ti,Xi)

π0(Ti − δ,Xi)
· Yi · uK1(Ti)

]
,
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b3,K1(Ti, Yi) := uK1(Ti) · {Yi − E[Yi|Ti]} .

Note that the expectations of b1,K1 , b2,K1 and b3,K1 are zeros. Let

Vt1,t0|t0 := E
[{
u⊤K1

(t1)ΦK1×K1(b1,K1 + b2,K1)− u⊤K1
(t0)ΦK1×K1b3,K1

}2
]
= w⊤Σ2K1×2K1w,

where w :=
(
u⊤K1

(t1) · ΦK1×K1 , u
⊤
K1
(t0) · ΦK1×K1

)⊤ ∈ R2K1 and

Σ2K1×2K1 := E

[
{b1,K1 + b2,K1}{b1,K1 + b2,K1}⊤, −{b1,K1 + b2,K1}b⊤3,K1

−b3,K1{b1,K1 + b2,K1}⊤, b3,K1b
⊤
3,K1

]
.

Theorem 8. Suppose supt∈T |E[π0(T,X)Y/π0(T−δ,X)|T = t]−(γ∗)⊤uK1(t)| = O(K−α̃
1 )

holds for some α̃ > 0 and γ∗ ∈ RK1 , λmin (Σ2K1×2K1) ≥ c > 0, Assumptions 1-4’ hold,
and

√
NK−α̃

1 → 0. Then

√
NV

−1/2
t1,t0|t0

[
θ̂t1,t0|t0 − θt1,t0|t0

]
d−→ N(0, 1).

See Ai, Linton, Motegi, and Zhang (2020, Section 5.2) for a proof of Theorem 8.
Feasible versions of the above CLT’s are implemented using plug-in sieve estimation of the
unknown quantities.

9 Monte Carlo simulations

The large sample properties established in previous sections do not indicate how the gen-
eralized optimization estimator behaves in finite samples. To evaluate its finite sample
performance, we conduct a simulation study on a continuous treatment. A simulation de-
sign is described in Section 9.1, and results are discussed in Section 9.2. To save space, the
simulation study in the present section is kept compact; see the supplemental material Ai,
Linton, Motegi, and Zhang (2020, Section 6) for a complete simulation study.

9.1 Simulation design

Let Xi
i.i.d.∼ N(0, 1) be a covariate. Error terms are drawn mutually independently as ξi

i.i.d.∼
N(0, 1) and ϵi

i.i.d.∼ N(0, 1). We consider two data generating processes (DGPs):

DGP-L T = 1 + 0.2X + ξ and Y = 1 +X + T + ϵ. (X affects T and Y linearly.)

DGP-NL T = 0.1X2 + ξ and Y = X2 + T + ϵ. (X affects T and Y non-linearly.)

24



For each DGP, the true link function is E[Y (t)] = 1 + t, a simple linear function with
β∗
1 = β∗

2 = 1. We use a linear link function g(T ; β) = β1 + β2T , compute the generalized
optimization estimator β̂ = (β̂1, β̂2)

⊤ with the exponential tilting function ρ(v) = −e−v−1,
and examine its performance.

To compute the generalized optimization estimator, two sieve basis functions uK1(T )

and vK2(X) need to be specified. For uK1(T ), we consider

u2(T ) = (1, T )⊤, u3(T ) = (1, T, T 2)⊤, u4(T ) = (1, T, T 2, T 3)⊤.

For vK2(X), we consider

v2(X) = (1, X)⊤, v3(X) = (1, X,X2)⊤, v4(X) = (1, X,X2, X3)⊤.

SinceK1, K2 ∈ {2, 3, 4}, there are 9 pairs of (K1, K2) in total. The 10-fold cross validation
is employed to select an optimal pair (K∗

1 , K
∗
2) among the 9 pairs (recall Section 7). For

comparison, simulation results with fixed (K1, K2) = (2, 3) are also reported.
We also compute Fong, Hazlett, and Imai’s (2018) covariate balancing generalized

propensity score estimator with a linear model specification and the quadratic loss func-
tion. The linear specification is correct under DGP-L, while it is incorrect under DGP-NL.
Comparing our estimator and the parametric estimator of Fong, Hazlett, and Imai (2018)
allows us to highlight the robustness of the former to non-linear DGPs. Fong, Hazlett, and
Imai (2018) also propose a nonparametric estimator in their Section 3.3. In their simu-
lation study, the parametric and nonparametric estimators exhibit similar performance for
each DGP considered (Fong, Hazlett, and Imai, 2018, Figure 2). Hence, the present paper
focuses on the parametric version of their estimator to save space.

Our proposed estimator and the parametric version of Fong, Hazlett, and Imai’s (2018)
estimator are computed in a simulated sample with size N ∈ {100, 500}, after which an-
other sample is generated and both estimators are computed again. This exercise is repeated
M = 1000 times.

To evaluate the performance of point estimation, the bias, standard deviation, and root
mean squared error (RMSE) of β̂1 and β̂2 are calculated from (a subset of) M = 1000

simulations. In a small portion of the M = 1000 samples, π̄N ≡ (1/N)
∑N

i=1 π̂K(Ti, Xi),
which should be equal to 1 in theory, takes a value far from 1 due to numerical instability in
the computation of Λ∗

K1×K2
. The numerical maximization with respect to Λ should lead to

a global maximizer Λ∗
K1×K2

in theory, but optimizing the K1×K2 elements of Λ all at once
is sometimes hard in practice. Hence, we calculate the bias, standard deviation, and RMSE
from Monte Carlo samples such that π̄N ∈ [0.5, 2]. There can be a few samples in which
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π̄N /∈ [0.5, 2], and these samples are simply discarded. (We admit that this computational
problem becomes worse as the dimension of covariates X becomes larger.)

To evaluate the finite sample performance of the interval estimation associated with
the proposed method, we implement the bootstrap method II with B = 500 iterations based
on (6.6). In this method, we construct bootstrapped confidence intervals without using the
asymptotic normality. For each of β1 and β2, we compute the 95% coverage probability and
the average width of the 95% confidence intervals across M = 1000 Monte Carlo samples.
For simplicity, the dimensions of the sieve basis functions are fixed at (K1, K2) = (2, 3)

when the performance of the interval estimation is evaluated.

9.2 Simulation results

Simulation results on point and interval estimation are reported in Tables 1 and 2, respec-
tively. We discuss point estimation first, and then discuss interval estimation. Under DGP-
L, the generalized optimization estimator (labeled as GOE) has reasonably small RMSE
whether (K1, K2) are fixed at (2, 3) or selected via the 10-fold cross validation. For the
intercept parameter β1, the RMSE of the parametric version of the covariate balancing gen-
eralized propensity score estimator (labeled as CBGPS) is even smaller than the RMSE
of GOE. For the slope parameter β2, the RMSE of CBGPS is as small as the RMSE of
GOE. The sharp performance of CBGPS is not surprising, since it has a correct parametric
specification under DGP-L1.

Under DGP-NL, GOE dominates CBGPS in terms of the estimation of β2. When
N = 100, the RMSEs with respect to β2 are {0.104, 0.201, 0.267} for GOE with fixed
(K1, K2), GOE with the cross validation, and CBGPS, respectively. Similarly, when N =

500, the RMSEs are {0.048, 0.133, 0.211}. The bias and RMSE of GOE shrink to 0 as the
sample size grows, indicating that GOE operates well under the non-linear DGP. CBGPS,
by contrast, fails with considerable bias under DGP-NL. The bias of CBGPS is 0.189 for
N = 100 and 0.194 for N = 500. These results suggest that GOE performs well for both
linear and non-linear scenarios, while CBGPS performs well for linear scenarios only.

We now discuss the results on interval estimation associated with GOE. For each DGP,
parameter, and sample size, the 95% coverage probability is nearly identical to 0.95. Fur-
ther, the average width of the bootstrapped confidence intervals shrinks as the sample size
grows, as expected. See β2 under DGP-NL, for example. The coverage probabilities are
0.956 and 0.950 when N ∈ {100, 500}, respectively. Similarly, the average widths are
0.422 and 0.180. These results indicate that the bootstrap method II given in (6.6) operates
sufficiently well under both linear and non-linear scenarios.
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Table 1: Simulation results on point estimation

DGP-L: T = 1 +X + ξ and Y = 1 +X + T + ϵ

Intercept β1 (truth: β∗
1 = 1) Slope β2 (truth: β∗

2 = 1)

N = 100 N = 500 N = 100 N = 500

(K1,K2) Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

GOE (2, 3) 0.005, 0.187, 0.187 0.001, 0.083, 0.083 0.001, 0.107, 0.107 0.002, 0.050, 0.050

GOE CV10 −0.005, 0.190, 0.190 0.006, 0.080, 0.080 0.006, 0.112, 0.112 0.000, 0.047, 0.047

CBGPS - −0.005, 0.149, 0.149 0.001, 0.067, 0.067 0.003, 0.106, 0.106 −0.001, 0.049, 0.049

DGP-NL: T = 0.1X2 + ξ and Y = X2 + T + ϵ

Intercept β1 (truth: β∗
1 = 1) Slope β2 (truth: β∗

2 = 1)

N = 100 N = 500 N = 100 N = 500

(K1,K2) Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

GOE (2, 3) 0.002, 0.176, 0.176 0.004, 0.079, 0.079 0.004, 0.104, 0.104 −0.001, 0.048, 0.048

GOE CV10 −0.037, 0.176, 0.180 −0.012, 0.077, 0.078 0.102, 0.173, 0.201 0.080, 0.107, 0.133

CBGPS - −0.035, 0.179, 0.182 −0.021, 0.075, 0.078 0.189, 0.188, 0.267 0.194, 0.083, 0.211

“GOE” is the proposed generalized optimization estimator. K1 and K2 are the dimensions of the polynomials of T and

X , respectively. CV10 signifies the 10-fold cross validation, where the choice set is K1,K2 ∈ {2, 3, 4}. “CBGPS” is

Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score estimator. The sample size

is N ∈ {100, 500}, and the number of Monte Carlo iterations is M = 1000.

10 Empirical study

We revisit the U.S. presidential campaign data analyzed by Urban and Niebler (2014) and
Fong, Hazlett, and Imai (2018). The motivation of the original study, Urban and Niebler
(2014), is well summarized in Fong, Hazlett, and Imai (2018, Section 2):

Urban and Niebler (2014) explored the potential causal link between advertis-
ing and campaign contributions. Presidential campaigns ordinarily focus their
advertising efforts on competitive states, but if political advertising drives more
donations, then it may be worthwhile for candidates to also advertise in non-
competitive states. The authors exploit the fact that media markets sometimes
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Table 2: Simulation results on interval estimation (generalized optimization estimator)

DGP-L DGP-NL

Intercept β1 Slope β2 Intercept β1 Slope β2

CP95 AveW CP95 AveW CP95 AveW CP95 AveW

N = 100 0.957 0.709 0.940 0.428 0.944 0.677 0.956 0.422

N = 500 0.966 0.311 0.947 0.184 0.942 0.305 0.950 0.180

DGP-L: T = 1 +X + ξ and Y = 1 +X + T + ϵ. DGP-NL: T = 0.1X2 + ξ and Y = X2 + T + ϵ. 95% confidence

intervals on the target parameters (β1, β2) are constructed via the bootstrap with B = 500 iterations. The sieve basis

functions are specified as u2(T ) = (1, T )⊤ (i.e., K1 = 2) and v3(X) = (1, X,X2)⊤ (i.e., K2 = 3). “CP95” signifies

the 95% coverage probability, while “AveW” signifies the average width of the confidence intervals across M = 1000

Monte Carlo samples. The sample size is N ∈ {100, 500}.

cross state boundaries. This means that candidates may inadvertently advertise
in noncompetitive states when they purchase advertisements for media markets
that mainly serve competitive states. By restricting their analysis to noncom-
petitive states, the authors attempt to isolate the effect of advertising from that
of other campaigning, which do not incur these media market spillovers.

The treatment of interest, the number of political advertisements aired in each zip code,
can be regarded as a continuous variable since it takes a range of values from 0 to 22379
across N = 16265 zip codes. Restricting themselves to a binary treatment framework,
Urban and Niebler (2014) compared 5230 zip codes that received more than 1000 adver-
tisements and 11035 zip codes that received less than 1000 advertisements. Their empirical
results suggest that advertising in non-competitive states had a significant causal effect on
the level of campaign contributions.

Fong, Hazlett, and Imai (2018) used the continuous treatment model, taking advantage
of their proposed CBGPS method. Their empirical results suggest, contrary to Urban and
Niebler (2014), that advertising in non-competitive states did not have a significant causal
effect on the level of campaign contributions (cf. Fong, Hazlett, and Imai, 2018, Table 2).

Using the generalized optimization estimator, we analyze the impact of advertisements
on contributions based on both binary and continuous treatment models. Let Yi and Ti be
the log of the campaign contribution and political advertisement in zip code i ∈ {1, . . . , N},
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respectively. Stack eight covariates as

X =



log(Population)

%Over 65

log(Income + 1)

%Hispanic

%Black

log(Population Density + 1)

%College Graduates

Can Commute


. (10.1)

Subscript i is omitted for brevity, but (10.1) is defined for each zip code. The definition
of each covariate is almost self-explanatory (see Fong, Hazlett, and Imai, 2018, Sec. 5 for
more details). The log-transformation is implemented for Y , T , and some of the covariates
in order to stabilize computation. Urban and Niebler (2014) made the data publicly avail-
able at the American Journal of Political Science (AJPS) Dataverse archive. See Section
10.1 for the binary treatment model and Section 10.2 for the continuous treatment model.

10.1 Binary treatment model

We dichotomize the treatment variable (i.e., the log-advertisement) as D = 1(T > 4).
This is equivalent to dichotomizing the advertisement at 100, and 7137 zip codes out of
N = 16265 are above the cut-off level. The potential outcome model is written as

E[Y ∗(d)] = β1 + β2 × d.

Then, the stabilized weight reduces to

π0(D,X) = D × P (D = 1)

P (D = 1 |X)
+ (1−D)× P (D = 0)

P (D = 0 |X)
.

The parameters of interest, β = (β1, β2)
⊤, are identified as

β1 = E[Y ∗(0)] =
E [(1−D)π0(D,X)Y ]

E[(1−D)π0(D,X)]
,

β2 = E[Y ∗(1)− Y ∗(0)] =
E [Dπ0(D,X)Y ]

E[Dπ0(D,X)]
− E [(1−D)π0(D,X)Y ]

E[(1−D)π0(D,X)]
.

The covariate balancing equation of propensity score becomes

E [Dπ(D,X)v(X)]

E[D]
= E[v(X)] =

E [(1−D)π(D,X)v(X)]

E[1−D]
.
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Our proposed estimator of stabilized weights becomes

π̂K(Di,Xi) = Diρ
′
(
λ̂⊤1KvK(Xi)

)
+ (1−Di)ρ

′
(
λ̂⊤2KvK(Xi)

)
,

where

λ̂1K = argmax
λ1

{∑N
i=1Diρ

(
λ⊤1 vK(Xi)

)∑N
i=1Di

− 1

N

N∑
i=1

λ⊤1 vK(Xi)

}
,

λ̂2K = argmax
λ2

{∑N
i=1(1−Di)ρ

(
λ⊤2 vK(Xi)

)∑N
i=1(1−Di)

− 1

N

N∑
i=1

λ⊤2 vK(Xi)

}
.

Finally, the generalized optimization estimator for β is given by

β̂1 =

∑N
i=1(1−Di)π̂K(Di,Xi)Yi∑N
i=1(1−Di)π̂K(Di,Xi)

, β̂2 =

∑N
i=1Diπ̂K(Di,Xi)Yi∑N
i=1Diπ̂K(Di,Xi)

− β̂1.

The sieve basis function is specified as vK(X) = (1,X⊤)⊤ with K = 9, where the covari-
ates are given in (10.1). The exponential tilting function ρ(w) = −e−w−1 is used. As in the
simulation study in Section 9, 95% confidence intervals for β1 and β2 are computed via the
bootstrap method II with B = 1000 iterations; recall (6.6).

Our empirical results are as follows. First, β̂1 = 1.227 and the bootstrapped confidence
interval is [1.198, 1.257]. Second, β̂2 = 0.061 and the bootstrapped confidence interval is
[0.003, 0.076]. The latter result indicates that advertising in non-competitive states has a
significantly positive causal effect on the level of campaign contributions at the 5% level,
which is a consistent result with Urban and Niebler (2014).

10.2 Continuous treatment model

The procedure for the continuous treatment model is described in detail in Section 9, hence
we refrain from repeating it here. The link function is specified as g(T,β) = β1 + β2T +

β3T
2, where β = (β1, β2, β3)

⊤. The sieve basis functions are specified as uK1(T ) =

(1, T, T 2)⊤ with K1 = 3 and vK2(X) = (1,X⊤)⊤ with K2 = 9, where the covariates are
given in (10.1). The exponential tilting function ρ(w) = −e−w−1 is used. 95% confidence
intervals for β are computed via the bootstrap method II with B = 1000 iterations.

Our empirical results are as follows. First, β̂1 = 1.100 and the bootstrapped confidence
interval is [0.909, 1.320]. Second, β̂2 = 0.140 and the confidence interval is [−0.025, 0.232].
Third, β̂3 = −0.015 and the confidence interval is [−0.025, 0.001]. The latter two results
suggest that advertising in non-competitive states does not have a significant causal effect
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on the level of campaign contributions, which is a consistent result with Fong, Hazlett, and
Imai (2018).

The binary and continuous approaches lead to the opposite conclusions; the former
finds the marginally significant impact of advertisements on campaign contributions at the
5% level, while the latter finds the marginally insignificant impact. These results suggest
that the causal effect should be small if it exists at all. The binary model involves only one
sieve basis function v9(X), while the continuous model involves two sieve basis functions
u3(T ) and v9(X). The latter requires the joint estimation of a relatively large-dimensional
parameter matrix Λ3×9; recall (4.4). This numerical complexity might be a reason why a
significant causal effect is not detected under the continuous model.

11 Concluding remarks

The weighted optimization framework provides a unified approach towards estimation of
treatment effects, under the condition of unconfounded treatment assignment. We estab-
lished the semiparametric efficiency of our methodology, but perhaps the main advantage
is its relatively simple form and good finite sample properties.

There are several extensions worth pursuing in future projects. First, estimation of the
nonparametric causal effect function under general loss function has not been completely
dealt with in this paper. But this is an important extension since it removes the burden of
parameterizing the causal effect. Second, the extension of the current setting to allow for
high dimensional covariates is also an important project. Third, panel data are common
in the empirical literature. Our approach is readily applicable to those data, although the
efficiency issue is more difficult. All these extensions shall be taken up in future studies.
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Appendix

A Proof of (2.2)

Using the law of iterated expectation and Assumption 1, we can deduce that

E [π0(T,X)L (Y − g(T ;β))]

=

∫
π0(t,x) · E[L(Y ∗(T )− g(T ;β))|T = t,X = x] dFT |X(t|x)dFX(x)

=

∫
E [L(Y ∗(t)− g(t;β))|T = t,X = x] dFT (t)dFX(x)

=

∫
E [L(Y ∗(t)− g(t;β))|X = x] dFT (t)dFX(x) (using Assumption 1)
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=

∫
E [L(Y ∗(t)− g(t;β))] dFT (t).

B Proof of Theorem 2
The sufficient part is obvious. We prove the necessary part. Let u(T ) = exp(a · T · i) and
v(X) = exp(b⊤X · i) be the test functions, where a ∈ R and b ∈ Rr. By assumption,

E
[
{π(T,X)− π0(T,X)} exp

{
a · T · i+ b⊤X · i

}]
+ E

[
π0(T,X) exp

{
a · T · i+ b⊤X · i

}]
=E [exp(a · T · i)] · E

[
exp(b⊤X · i)

]
.

By definition E
[
π0(T,X) exp

{
a · T · i+ b⊤X · i

}]
= E [exp(a · T · i)]·E

[
exp(b⊤X · i)

]
.

Then E
[
{π(T,X)− π0(T,X)} exp

{
a · T · i+ b⊤X · i

}]
= 0 for all a ∈ R and b ∈ Rr.

By the uniqueness of Fourier transform, we can obtain π(T,X) = π0(T,X) a.s.

C Asymptotic result when π0(T,X) is known
Suppose the stabilized weight function π0(T,X) is known, the weighted optimization esti-
mator of β∗, denoted by β̂known, is

β̂known = min
β

N∑
i=1

π0(Ti,Xi)L(Yi − g(Ti; β)).

We also assume the asymptotic first order condition

1

N

N∑
i=1

π0(Ti,Xi)L
′(Yi − g(Ti; β̂known))m(Ti; β̂known) = op(N

−1/2) (C.1)

holds with probability approaching to one.

Proposition B.1 Suppose Assumptions 5, 6 (i-ii), and 7 hold, and (C.1) holds, then we have

1. β̂known
p−→ β∗;

2.
√
N(β̂known − β∗)

d−→ N(0, Vineff ), where

Vineff := H−1
0 · E

[
π0(T,X)2L′(Y − g(T ;β∗))2m(T ;β∗)m(T ;β∗)⊤

]
·H−1

0 ;

3. furthermore, if E [L′(Y (t)− g(t;β∗))] = 0 holds for all t ∈ T , then Vineff ≥ Veff
in the sense of that c⊤ · Vineff · c ≥ c⊤ · Veff · c for any vector c ∈ Rp.
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Proof. By Assumption 5 and the uniform law of large number, we obtain

1

N

N∑
i=1

π0(Ti,Xi)L {Yi − g(Ti;β)}

→ E [π0(T,X)L {Y − g(T ;β)}] in probability uniformly over β,

which implies the consistency result ∥β̂known − β∗∥ p−→ 0.
The first order condition (C.1) holds with probability approaching to one. Note that

L′(·) may not be a differentiable function, e.g. L′(v) = τ − I(v < 0) in quantile regres-
sion, we cannot simply apply Mean Value Theorem on (C.1) to obtain the expression for√
N(β̂known − β∗). To solve this problem, we resort to the empirical process theory in

Andrews (1994). Define

f(β) := E [π0(T,X)L′(Y − g(T ;β))m(T ;β)] ,

which is a differentiable function in β and by (2.3) f(β∗) = 0. Using Mean Value Theorem,
we can obtain

0 =
√
Nf(β∗) =

√
Nf(β̂known)−∇βf(β̄) ·

√
N(β̂known − β∗) ,

where β̄ lies on the line joining β̂known and β∗. Because ∇βf(β) is continuous in β at β∗,
and ∥β̂known − β∗∥ p−→ 0, then we have

√
N(β̂known − β∗) = [∇βf(β

∗)]−1 ·
√
Nf(β̂known) + op(1).

Define the empirical process

νN(β) =
1√
N

N∑
i=1

{π0(Ti,Xi)L
′(Yi − g(Ti;β))m(Ti;β)− E [π0(T,X)L′(Y − g(T ;β))m(T ;β)]} .

By (C.1) and the definition of νN(β), we have
√
N(β̂known − β∗)

=∇βf(β
∗)−1 ·

{
√
Nf(β̂known)−

1√
N

N∑
i=1

π0(Ti,Xi)L
′(Yi − g(Ti; β̂known))m(Ti; β̂known)

+
1√
N

N∑
i=1

π0(Ti,Xi)L
′(Yi − g(Ti; β̂known))m(Ti; β̂known)

}
=−∇βf(β

∗)−1 · νN(β̂known) + op(1)

=H−1
0 ·

{(
νN(β̂known)− νN(β

∗)
)
+ νN(β

∗)

}
+ op(1) .
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By Assumptions 6, 7, Theorems 4 and 5 of Andrews (1994), we have that νN(·) is stochas-
tically equicontinuous, which implies νN(β̂known)− νN(β

∗)
p−→ 0. Therefore,

√
N(β̂known − β∗) = H−1

0

1√
N

N∑
i=1

π0(Ti,Xi)L
′(Yi − g(Ti;β

∗))m(Ti;β
∗) + op(1) ,

then we can conclude that the asymptotic variance of
√
N(β̂known − β∗) is V

ineff
.

We next show Vineff ≥ Veff . From Theorem 1, we have

Veff = H−1
0 ·

{
E
[
π0(T,X)2L′(Y − g(T ;β∗))2m(T ;β∗)m(T ;β∗)⊤

]
+ E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X]⊤

]
+ E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X]⊤

]
+ E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T ] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T ]⊤

]
− 2 · E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X] · π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)⊤

]
− 2 · E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X]⊤

]
− 2 · E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T ]⊤

]
+ 2 · E

[
π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗) · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X]⊤

]
+ 2 · E

[
π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗) · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β∗)|T ]⊤

]
+ 2 · E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T ] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X]⊤

]}
H−1

0

=H−1
0

{
E
[
π0(T,X)2L′(Y − g(T ;β∗))2m(T ;β∗)m(T ;β∗)⊤

]
− E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X]⊤

]
+ E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X]⊤

]}
H−1

0 ,

where the last equality holds by noting

E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T = t] = E [L′(Y ∗(t)− g(t;β∗))] ·m(t;β∗) = 0 ,

since the model is correctly specified, i.e. E [L′(Y ∗(t)− g(t;β∗))] = 0 for t ∈ T . There-
fore,

Vineff − Veff

=H−1
0

{
E
[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X]⊤

]
− E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X]⊤

]}
H−1

0

≥0,

where the last inequality holds by Jensen’s inequality:

E
[
E[π0(T,X)(Y − g(T ;β∗))m(T ;β∗)|X] · E[π0(T,X)(Y − g(T ;β∗))m(T ;β∗)|X]⊤

]
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<E
[
E[π0(T,X)(Y − g(T ;β∗))m(T ;β∗)|T,X] · E[π0(T,X)(Y − g(T ;β∗))m(T ;β∗)|T,X]⊤

]
.

D Duality of primal problem (4.2)

We first introduce some notation:

• Let mK(T,X) = vec
(
uK1(T )v

⊤
K2
(X)

)
denote a K-dimensional column vector

formed by the elements of the matrix uK1(T )v
⊤
K2
(X). LetMK×N = (mK(T1,X1), . . . ,

mK(TN ,XN)), which is a K ×N matrix.

• Let uK1,k(T ) (resp. vK2,k′(X)) denote the kth (resp. k′th) component of uK1(T )
(resp. vK2(X)), and denote

uK1,k =
1

N

N∑
i=1

uK1,k(Ti) and vK2,k′ =
1

N

N∑
i=1

vK2,k′(Xi).

Let bK be aK dimensional column vector whose elements are formed by {ūK1,kv̄K2,k′ ; k =
1, ..., K1, k

′ = 1, ..., K2}.

• Denote π = (π1, ..., πN) and F (π) =
∑N

i=1 πi log πi.

The primal optimization problem (4.2) can be written as minπ F (π)

subject to MK×N · π = N · bK
(D.1)

By Tseng and Bertsekas (1991), the conjugate convex function of F (·) is

F ∗(z) = sup
π

N∑
i=1

{ziπi − πi log πi} =
N∑
i=1

{ziπ∗
i − π∗

i log π
∗
i } ,

where π∗
j satisfies the first order condition:

zj = log π∗
j + 1 ⇒ π∗

j = ezj−1 = ρ′(zi).

By substitution, we obtain

F ∗(z) =
N∑
i=1

{
zie

zi−1 − ezi−1(zi − 1)
}
=

N∑
i=1

ezi−1 =
N∑
i=1

−ρ(−zi).
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By Tseng and Bertsekas (1991), the dual problem of (D.1) is

max
λ∈RK

{
λ⊤ (N · bK)− F ∗ (λ⊤MK×N

)}
= max

Λ∈RK1×RK2

N∑
i=1

{
u⊤K1

ΛvK2 + ρ
(
−uK1(Ti)

⊤ΛvK2(Xi)
)}

= max
Λ∈RK1×RK2

N∑
i=1

{
ρ
(
uK1(Ti)

⊤ΛvK(Xi)
)
− u⊤K1

ΛvK2

}
= max

Λ∈RK1×RK2

ĜK1×K2(Λ). (D.2)

Therefore, the dual solution of (4.2) is given by

π̂K(Ti,Xi) = ρ′
(
uK1(Ti)

⊤Λ̂K1×K2vK2(Xi)
)
,

where Λ̂K1×K2 is the maximizer of the strictly concave objective function ĜK1×K2 .

E Proof of (6.2)

∇βE [L′(Y − g(T ;β))|T = t,X = x]
∣∣∣
β=β∗

=∇β

[∫
R
L′(y − g(t;β))fY |T,X(y|t,x)dy

] ∣∣∣
β=β∗

=∇β

[∫
R
L′(z)fY |T,X(z + g(t;β)|t,x)dz

] ∣∣∣
β=β∗

(use z = y − g(t;β))

=

∫
R
L′(z) · ∂

∂y
fY |T,X(z + g(t;β∗)|t,x)dz ·m(t;β∗)

=

∫
R
L′(y − g(t;β∗)) · ∂

∂y
fY |T,X(y|t,x)dy ·m(t;β∗)

=

∫
R
L′(y − g(t;β∗)) ·

∂
∂y
fY,T,X(y, t,x)

fY,T,X(y, t,x)
fY |T,X(y|t,x)dy ·m(t;β∗)

=E

[
L′(Y − g(T ;β∗))

∂
∂y
fY,T,X(Y, T,X)

fY,T,X(Y, T,X)

∣∣∣∣T = t,X = x

]
m(t;β∗).
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