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Abstract

We explore inference on regression coefficients in semiparametric multinomial response mod-

els. We consider cross-sectional, and both static and dynamic panel settings where we focus

throughout on inference under sufficient conditions for point identification. The approach to

identification uses a matching insight throughout all three models coupled with variation in re-

gressors: with cross-section data, we match across individuals while with panel data, we match

within individuals over time. Across models, IIA is not assumed as the unobserved errors across

choices are allowed to be arbitrarily correlated. For the cross-sectional model, estimation is

based on a localized rank objective function, analogous to that used in Abrevaya, Hausman,

and Khan (2010), and presents a generalization of existing approaches. In panel data settings,

rates of convergence are shown to exhibit a curse of dimensionality in the number of alternatives.

The results for the dynamic panel data model generalize the work of Honoré and Kyriazidou

(2000) to cover the multinomial case. A simulation study establishes adequate finite sample

properties of our new procedures. We apply our estimators to a scanner panel data set.

Keywords: Multinomial Response, Rank Estimation, Dynamic Panel Data.

1 Introduction

Many important economic decisions involve households’ or firms’ choice among qualitative or dis-

crete alternatives. Examples are individuals’ choice among transportation alternatives, family
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sizes, residential locations, brands of automobiles, health plans, etc. The theory of discrete choice

is designed to model these kinds of choice settings and to provide the corresponding econometric

methodology that allows for model estimation and prediction. A standard approach in the econo-

metrics discrete choice literature is to model discrete choices as outcomes generated by a stochastic

utility maximization model. In the context of choice behavior, the probabilities in the multinomial

model are to be interpreted as the probability of choosing the respective alternatives (choice proba-

bilities) and so one is interested in expressing the choice probabilities as functions of the individuals’

preferences and the choice constraints. As in most of the econometrics literature, individuals know

their own utilities and make a choice from a well-defined choice set, while the econometrician knows

the choice set, observes choices and covariates and is interested in learning these preferences for the

purpose of prediction and counterfactual analysis. Given a parametric model for preferences, the

objective of this paper is to learn the finite-dimensional coefficients that characterize this model

using multinomial choice data.

There has been a renewed interest recently among applied economists in estimating models of

multinomial choice with both cross-section and panel data. In marketing, IO, and other literature,

recent papers have also emphasized the role of dynamics in panel data settings. See, for example,

Merlo and Wolpin (2015), for an application to a dynamic model of schooling and crime, Handel

(2013) for a model of health insurance choice, among others.1 A central question in these models is

the separation of heterogeneity from state dependence. More broadly, in econometric theory, there

has been a push for semiparametric work in models that relax the IIA assumption in both cross-

section and panel data models. For example, Ahn, Powell, Ichimura, and Ruud (2017) study this

problem with cross-section data, Pakes and Porter (2014) and Shi, Shum, and Song (2018) study

multinomial panel data models without IIA, while Khan, Ponomareva, and Tamer (2019) analyze

the identification question in binary response models in dynamic panels under weak assumptions.

More recently, Gao and Li (2019) provide novel identification results in panel multinomial models

when the link function can be unknown and/or nonseparable in the fixed effects.

In this paper, we focus on inference on cross-sectional and panel data multinomial response

models where we use a unified approach for identification in all three classes of multinomial models:

cross-sectional, static panel, and dynamic panel. Throughout and most importantly, we relax the

IIA property by allowing for arbitrary correlation in the unobserved errors across choices. This

IIA property, that is often used in applications, can result in unintuitive subsititution patterns.

In cross-sectional settings, we match different individuals or units in a particular way to obtain a

monotone index model that is familiar in econometrics. This matching requirement is guaranteed to

hold under the conditions we require on the regressors. We then generalize this matching approach

to static panel data models and require different variations in the regressors over time to garner

point identification. The contribution here is a model that extends the binary choice panel data

1Other interesting papers include Dubé, Hitsch, and Rossi (2010), Illanes (2016), Ketcham, Lucarelli, and Powers
(2015), Polyakova (2016), Raval and Rosenbaum (2018).
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model in Manski (1987) to multinomial response models. We derive large sample properties of the

multinomial maximum score (MS) estimator and show that its rate of convergence is a function of

the number of alternatives. Finally, we provide point identification results in the panel multinomial

model with dynamics, provide an estimator in this case, and study its asymptotics. This generalizes

the work of Honoré and Kyriazidou (2000) to multinomial settings and complements their work by

providing rate and large-sample distribution results. Our approaches for both cross-sectional and

panel data models are robust in the sense that they achieve meaningful bounds for the preference

coefficients when conditions for point identification fail, such as when all the regressors are discrete.

We structure the paper as follows. In the next section, we introduce the cross-sectional model,

and state standard regularity conditions on both observed and unobserved random variables that

guarantee point identification. This model introduces the main intuition for how we get identi-

fication in this paper and can be clearly explained. This identification strategy also motivates a

localized rank based objective function. We then show that this model yields a root-n consistent

and asymptotically normal estimator under appropriate conditions.

Section 3 generalizes the cross-sectional model by assuming the availability of a longitudinal

panel data set and introducing unobserved individual and alternative specific effects. For this

model, we propose a localized maximum score (analogous to Manski (1987)) estimator and show

its point consistency, rate of convergence, and limiting distribution under mild regularity condi-

tions. Most interestingly, in this paper, we further generalize the multinomial model by introducing

dynamics in Section 3.2. Specifically, we do so by allowing lagged values of dependent variables

to be explanatory variables. This approach of modeling dynamics was taken in the binary choice

model. See, e.g., Heckman (1978), Honoré and Kyriazidou (2000), Chen, Khan, and Tang (2015),

and Khan, Ponomareva, and Tamer (2019). Here again, we establish large sample properties of our

procedure under standard conditions.

Section 4 explores finite sample properties of the new procedures through a small scale simu-

lation study, and Section 5 applies the new procedures using an optical scanner panel data set on

purchase decisions in the saltine cracker market. Section 6 concludes by summarizing results and

proposing areas for future research. A supplementary appendix collects all proofs.

For ease of reference, the notation adopted in the next sections of the paper are listed here:

Notation. In the sections that follow, where variables will depend on the individual, choice and

time period, we will use letters i and m for indexing individuals, j and k for indexing alternatives,

and s and t for indexing time periods. Further notation we will adopt to help clarification include

having the first element of a (constant or random) vector ν be denoted by ν(1) and the sub-vector

comprising its remaining elements be denoted by ν̃. 1[·] denotes the indicator function that equals

1 when the event in the brackets occurs, and 0 otherwise. For two random vectors u and v, the

notation u
d
= v|· means that u and v have identical distribution conditional on ·, and u ⊥ v|·
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means that u and v are independent conditional on ·. We use Fu(·) (Fu|v(·)) and fu(·) (fu|v(·)) to

denote the joint cumulative distribution function (CDF) and probability density function (PDF)

of u (conditional on v), respectively. The interior of a set S is denoted by int(S) and the symbol

\ represents set difference.

2 Cross-Sectional Multinomial Choice

2.1 Semiparametric Multinomial Choice

We consider the standard multinomial response model where the dependent variable takes one

of J + 1 mutually exclusive and exhaustive alternatives numbered from 0 to J . Specifically, for

individual i, alternative j is assumed to have an unobservable indirect utility y∗ij . The alternative

with the highest indirect utility is assumed chosen. Thus the observed choice yij can be defined as

yij = 1[y∗ij > y∗ik, ∀k 6= j]

with the convention that yij = 0 indicates that the choice of alternative j is not made by individual

i. As is standard in the literature, an assumption of joint continuity of the indirect utilities rules out

ties (with probability one). In addition, we maintain the familiar linear form for indirect utilities2

y∗i0 = 0,

y∗ij = x′ijβ0 − εij , j = 1, ..., J, (2.1)

where β0 is a p-dimensional vector of unknown preference parameters of interest whose first com-

ponent is normalized to have absolute value 1 (scale normalization). Note that for alternative

j = 0, the standard (location) normalization y∗i0 = 0 is imposed. The vector εi ≡ (εi1, ..., εiJ)′ of

unobserved error terms, attained by stacking all the scalar idiosyncratic errors εij , is assumed to

be jointly continuously distributed and independent of the p × J-dimensional vector of regressors

xi ≡ (x′i1, ..., x
′
iJ)′.3 We stress that expression (2.1) is rather general. By properly re-organizing

xij ’s and β0, (2.1) can accommodate both alternative-specific and individual-specific covariates.4

Parametric assumptions on the unobservables, such as i.i.d. Type I extreme value (multinomial

2Our method can be applied to more general models with indirect utilities y∗ij = uj(x
′
ijβ0,−εij), j = 1, 2, where

uj(·, ·)’s are unknown (to econometrician) R2 7→ R functions strictly increasing in each of their arguments. It will
be clear that our rank procedure does not rely on the additive separability of the regressors and error terms.

3We impose the independence restriction here to simplify exposition. As will become clear below, our matching-based
approach allows εi to be correlated with individual-specific regressors.

4See Cameron and Trivedi (2005) p. 498 for a detailed discussion. But the identification of models with both
alternative-specific and individual-specific regressors will need to take two steps, of which the first step only identifies
the coefficients on alternative-specific regressors. See Remarks 1 and 2 below.
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Logit) or multivariate normal (multinomial Probit), have been used to attain identification.5 The

multinomial Logit model suffers from the well known IIA problem (McFadden (1978)). The multi-

nomial Probit, on the other hand, leads to choice probabilities that are difficult to compute. There

have been approaches to ameliorate these problems by, for example, using nested Logit models,

and simulation-based approaches have been successfully used to approximate multiple integrals.

We take another approach. This paper is interested in the question of what is required to point

identify β0 when minimal assumptions are made on the joint distribution of εi. Previous contribu-

tions to this question include Lee (1995), who proposes a profile likelihood approach, extending the

results in Klein and Spady (1993) for the binary response model. Ahn, Powell, Ichimura, and Ruud

(2017) propose a two-step estimator that requires nonparametric methods but show the second step

is of closed-form. Shi, Shum, and Song (2018) also propose a two-step estimator in panel setups

exploiting a cyclic monotonicity condition, which also requires a high dimensional nonparametric

first stage, but whose second stage is not closed-form as Ahn, Powell, Ichimura, and Ruud (2017)

is.

The next section demonstrates the main intuition that runs through the various models in this

paper. It is provided for the cross-sectional multinomial response model.

2.2 Local Rank Procedure

Consider a multinomial response model with 3 alternatives (J = 2) for now where the indirect

utilities for alternatives 0, 1, and 2 are

y∗i0 = 0,

y∗ij = x′ijβ0 − εij , j = 1, 2.

This simple model is sufficient to illustrate our approach, which is straightforward to be applied to

data with more alternatives.

Given the indirect utilities, the observed dependent variables yij is of the form

yij = 1[y∗ij > y∗ik, ∀k 6= j], j = 0, 1, 2,

5In these parametric models, the indirect utilities are typically specified as u∗ij = w′ijβ0 − eij , j = 0, 1, ..., J and the
corresponding distributional restrictions are imposed on errors ei ≡ (ei0, ..., eiJ)′. Expression (2.1) can be written
from these models by location normalization xij ≡ wij − wi0 and εij ≡ eij − ei0.
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and the choice probabilities, for a given β0 and joint distribution Fε on the εi, are expressed by

G(xi;β0, Fε) =

 P (x′i1β0 − εi1 < 0, x′i2β0 − εi2 < 0)

P (x′i1β0 − εi1 > 0, x′i1β0 − εi1 > x′i2β0 − εi2)
P (x′i1β0 − εi1 < x′i2β0 − εi2, x′i2β0 − εi2 > 0)

 . (2.2)

Assuming a random sample of {yi0, yi1, yi2, xi}ni=1, we are interested in the identification of β0.

In what follows, we propose a procedure attaining point identification of β0 when there is at least

one continuous regressor with large support, and attaining bounds for β0 when all regressors are

discrete. To this end, we maintain the assumption that εi ⊥ xi but allow for arbitrary correlation

between εi1 and εi2.

To illustrate how we garner information about β0 from model (2.2), we first fix xi2 and illustrate

with the choice probability for the first alternative. With xi2 fixed, we have what we call a condi-

tional monotone index model.6 By this we mean that conditional on xi, P (yi1 = 1|xi1, xi2 = x2) is

increasing in x′i1β0 for all constant vector x2. Thus for all i 6= m, we have the following (conditional)

identification inequality

P (yi1 = 1|xi, xi2 = x2) ≥ P (ym1 = 1|xm, xm2 = x2)⇔ x′i1β0 ≥ x′m1β0. (2.3)

Fixing regressors of all other alternatives to obtain monotone index models for one alternative

motivates all our identification results in this paper.

Note that the monotonic relation specified in (2.3) can be repeated for all values of x2 (finitely

many if the support of xi2 is finite). Besides, note that for a fixed x2, P (yi0 = 1|xi, xi2 = x2)

and P (yi2 = 1|xi, xi2 = x2) are both decreasing in x′i1β0, which gives additional identification

inequalities for alternative 1, i.e.,

P (yi0 = 1|xi, xi2 = x2) ≤ P (ym0 = 1|xm, xm2 = x2)⇔ x′i1β0 ≥ x′m1β0

and

P (yi2 = 1|xi, xi2 = x2) ≤ P (ym2 = 1|xm, xm2 = x2)⇔ x′i1β0 ≥ x′m1β0.

Furthermore, similar conditional monotone index model can also be exploited by fixing xi1 at some

constant vector x1, resulting the following identification inequalities

P (yi2 = 1|xi, xi1 = x1) ≥ P (ym2 = 1|xm, xm1 = x1)⇔ x′i2β0 ≥ x′m2β0, (2.4)

P (yi0 = 1|xi, xi1 = x1) ≤ P (ym0 = 1|xm, xm1 = x1)⇔ x′i2β0 ≥ x′m2β0,

6Khan and Tamer (2018) showed how this notion can aid in establishing identification of regression coefficients in
multinomial response models.
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and

P (yi1 = 1|xi, xi1 = x1) ≤ P (ym1 = 1|xm, xm1 = x1)⇔ x′i2β0 ≥ x′m2β0.

Collectively, all these identification inequalities can be used to study the conditions needed for

identifying β0. We note that when fixing regressors, individual-specific regressors drop out from

these identification inequalities, so this method cannot immediately point identify their coefficients.

We will revisit and elaborate on this issue in Remarks 1 and 2 later on.

To establish the (point) identification of β0 through the identification inequalities above, the

following conditions are sufficient.

CS1 The data {(y′i, x′i)′}ni=1 are i.i.d. from a population P, where yi ≡ (yi0, yi1, yi2)
′.

CS2 (i) εi ⊥ xi for all i = 1, ..., n, and (ii) the joint distribution of εi is absolutely continuous with

respect to the Lebesgue measure on R2.

CS3 For any pair of (i,m), denote ximj = xij − xmj for j = 1, 2. Then, (i) without loss of

generality (w.l.o.g.), x
(1)
im1 (x

(1)
im2) has almost everywhere (a.e.) positive Lebesgue density on R

conditional on x̃im1 (x̃im2) and conditional on xim2 (xim1) in a neighborhood of xim2 (xim1)

near zero, and (ii) the support of xim1 (xim2) conditional on xim2 (xim1) in a neighborhood

of xim2 (xim1) near zero is not contained in any proper linear subspace of Rp.

CS4 β0 ∈ int(B) with B ≡ {b ∈ Rp||b(1)| = 1} ∩ Ξ, where Ξ ⊂ Rp is a compact set.

Assumptions CS1 and CS2 are sufficient to establish the identification inequalities like (2.3) and

(2.4). Note that Assumption CS2 allows arbitrary correlation among (εi1, εi2), and our matching-

based approach intrinsically accommodates flexible dependence of εi on individual specific char-

acteristics (e.g., inter-personal heteroskedasticity). Assumption CS3(i) is a standard restriction

analogous to that assumed in Manski (1975, 1985) and Han (1987), which secures the point identi-

fication, as opposed to a set identification. Assumption CS3(ii) is the familiar full-rank condition.

Assumption CS4 is about scale normalization and the parameter space. As usual in discrete choice

models, β0 can only be identified up to scale. Following a substantial literature, we normalize the

first element of β0 to have absolute value one.

Our identification result for the cross-sectional multinomial response model is stated in the

following theorem, which is proved in Appendix A.

Theorem 2.1. If Assumptions CS1–CS4 hold, β0 is identified in the parameter space B.

The local monotonicity in (2.3) translates into an estimation procedure, which will converge

to an informative region even when all regressors have discrete support.7 For example, given a

7Note that when we are conditioning on, say xi2 being fixed yet allowing xi1 to vary we are implicitly assuming
exclusion between components of these vectors.
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random sample of n observations, we propose the following weighted8 rank correlation estimator,

analogous to the maximum rank correlation (MRC) estimator proposed in Han (1987), defined as

the maximizer, over the parameter space B, of the objective function

G1n(b) =
1

n(n− 1)

∑
i 6=m

1[xi2 = xm2](yi1 − ym1) · sgn((xi1 − xm1)
′b), (2.5)

where sgn(·) in expression (2.5) denotes the sign function. The objective function (2.5) is associated

to identification inequality (2.3) for yi1. As alluded to, we can also work with yi0 and yi2. In addition

to these, by matching xi1 and xm1, we can also construct a similar objective function motivated by

(2.4)

G2n(b) =
1

n(n− 1)

∑
i 6=m

1[xi1 = xm1](yi2 − ym2) · sgn((xi2 − xm2)
′b).

It will be clear that any one or a combination of objective functions of the form above can be

used for inference on β0. To ease exposition, our discussion in the rest of this section will focus on

objective function (2.5). The results can be generalized with straightforward modification.

Remark 1. When the model contains both alternative-specific and individual-specific regressors, for

example y∗ij = x′ijβ0 +w′iη0j− εij for j = 1, 2 with wi collecting all individual-specific regressors, the

objective function (2.5) can only get us identification information about β0 since with the matching

{xi2 = xm2, wi = wm}, w′iη01 drops out from the monotone index model. But in a special case

where η01 = η02 = η0, a two-step procedure is possible to establish identification of both β0 and η0.

In the first step, we use objective function (2.5) to get β0 and hence the indices x′i1β0 and x′i2β0. In

the second step, by conditioning on {x′i1β0 = x′i2β0}, the probability of choosing alternative 1, for

example, becomes

P (yi1 = 1|xi, wi, x′i1β0 = x′i2β0) = P (x′i1β0 + w′iη0 − εi1 > 0, εi1 < εi2).

This gives another version of the conditional monotone index model (monotone in w′iη0), and the

identification of η0 can be based on identification inequalities of the following form

P (yi1 = 1|xi, wi, x′i1β0 = x′i2β0) ≥ P (ym1 = 1|xm, wm, x′m1β0 = x′m2β0)

⇔x′i1β0 + w′iη0 ≥ x′m1β0 + w′mη0.

Remark 2. This is related to the discussion in Remark 1. For a more general case where η01 6= η02,

once β0 is “known” from the first step, identifying restrictions for η0 = (η′01, η
′
02)
′ can be obtained in

a second step where we condition on {x′i1β0 = x′m1β0 = u1, x
′
i2β0 = x′m2β0 = u2} for some constants

8Here the weights correspond to binary, “exact” matches of each component of the vector x2.
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u1 and u2,

P (yi1 = 1|xi, wi, x′i1β0 = u1, x
′
i2β0 = u2) > P (ym1 = 1|xm, wm, x′m1β0 = u1, x

′
m2β0 = u2)

⇒¬{(wi − wm)′η01 ≤ 0, (wi − wm)′(η01 − η02) ≤ 0}

with ¬ denoting the logical negation operator. Gao and Li (2019) study the identification and

estimation of panel data multinomial response models based on identifying restrictions of this type.

We believe that similar approach can be applied here to get bounds for η0. We note that this general

case would fall into the class of multiple index models. As pointed out in Lee (1995), alternative-

specific regression coefficients are generally not separately point identified since identification of

parameters requires that each index contains at least one distinct variable which is not contained in

other indices.

Note that in the presence of continuous regressors, the probability of getting perfectly matched

observations is zero.9 Thus the value of the objective functions will always be zero. But here we

can construct kernel weights as follows. To illustrate for the objective function (2.5), assuming the

regressors for alternative 2 have at least one continuous component, we construct the approximate

binary weight

Khn(xi2 − xm2) ≈ 1[xi2 = xm2]

with Khn(·) ≡ K(·/hn) where K is a kernel function and hn is a bandwidth sequence that converges

to 0 as n → ∞. The idea is to replace the binary weights for xi2 = xm2 in expression (2.5) with

weights that depend inversely on the magnitude of xi2 − xm2, giving more weight to observations

for which xi2− xm2 is close to 0. Then we compute the estimator β̂ of β0 with the following kernel

weighted objective function

GK1n(b) =
1

n(n− 1)

∑
i 6=m

Khn(xi2 − xm2)(yi1 − ym1) · sgn((xi1 − xm1)
′b). (2.6)

The rest of this section concerns the asymptotic properties of the estimator β̂ defined as the

maximizer of objective function (2.6).10 Before presenting additional regularity conditions and the

main results, we introduce some new notations to ease exposition:

- f2(·) denotes the PDF of xim2. Fx(·) (fx(·)) denotes the joint probability distribution (density)

function of xi. fxj (·) denotes the marginal PDF of xij for j = 1, 2. fx2|x1(·) denotes the

9But note that this depends on the choice in question. For example, consider the same 3-alternative setting. Suppose
for alternative 1, the regressor vector has one continuous component with support on the real line, but its other
components are discrete. Suppose for alternative 2, all the components of the regressor vector are discrete. Then
we can match as in (2.5), and this in fact will point identify β0.

10To streamline exposition, we will focus on the case where all components of xi2 are continuous. In practice, when
the regressor vector contains both continuous and discrete components, one could apply the kernel weight to the
former and binary weight to the latter.
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conditional PDF of xi2 conditional on xi1.

- yim1 ≡ yi1 − ym1 and qim(b) ≡ yim1 · sgn(x′im1b).

- B(xi1, xm1, xi2, xm2) ≡ E[yim1|xi1, xm1, xi2, xm2] and Sim(b) ≡ sgn(x′im1b).

- τi(b) ≡ E[qim(b)|xi1, xi2, xm2 = xi2] =
∫
B(xi1, xm1, xi2, xi2)Sim(b)fx(xm1, xi2)dxm1. We use

∇1τi(b) and ∇2τi(b) to denote the gradient and Hessian matrix of function τi(·) evaluated at

b, respectively.

We impose the following regularity conditions:

CS5 f2(·) is absolutely continuous, bounded from above on its support, strictly positive in a

neighborhood of zero, and continuously differentiable with bounded first derivatives.

CS6 For all b ∈ B, E[qim(b)|xim2 = ·] is continuously differentiable with bounded first derivatives.

B(·, ·, ·, ·) is κthB continuously differentiable with bounded κthB derivatives, and fx2|x1(·) is κthf
continuously differentiable with bounded κthf derivatives. Denote κ = κB + κf . κ is an even

integer greater than p.

CS7 Let ‖ · ‖F denote the Frobenius norm, X denote the support of xi, and N denote a neighbor-

hood of β0. Then, for all xi ∈ X and b ∈ N ,

- There exists an integrable function φs(·) such that
∫
|Sim(b)− Sim(β0)|fx1(xm1)dxm1 ≤

φs(xi1)‖b− β0‖.

- All mixed second partial derivatives of τi(b) exist on N .

- There is an integrable function φτ (·) such that ‖∇2τi(b)−∇2τi(β0)‖F ≤ φτ (xi)‖b− β0‖.

- E[‖∇1τi(β0)‖2] <∞, E[‖∇2τi(β0)‖F ] <∞, and E[∇2τi(β0)] is negative definite.

CS8 The function K : Rp 7→ R used to construct the weight in (2.6) is an κth order bias-reducing

kernel. K(·) is continuously differentiable and also assumed to satisfy the following conditions:

(i) supv∈Rp |K(v)| < ∞, (ii)
∫
K(v)dv = 1, (iii)

∫
|v|1|K(v)|dv < ∞, where | · |1 denotes the

l1-norm, and (iv) for positive integers ι1, ..., ιp satisfying 0 < ι1 + · · ·+ ιp ≤ κ,

∫
vι11 v

ι2
2 · · · v

ιp
p K(v1, ..., vp)dv1 · · · dvp

{
= 0 if ι1 + · · ·+ ιp < κ

6= 0 if ι1 + · · ·+ ιp = κ
.

CS9 The bandwidth sequence hn used to construct the kernel weight in (2.6) is a sequence of

positive numbers such that as n→∞: (i) hn → 0, (ii)
√
nhκn → 0, and (iii)

√
nhpn →∞.

The boundedness and smoothness restrictions placed in Assumptions CS5 and CS6 are needed

for proving the uniform convergence of the objective function to its population analogue and de-

riving the root-n rate of β̂. Assumption CS7 is analogous to the regularity conditions imposed in
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Sherman (1993). Assumptions CS8 and CS9 place mild restrictions on kernel functions and tuning

parameters, all of which are standard in the literature.

The theorem below establishes the
√
n-consistency and asymptotic normality of the proposed

estimator. The proof, as presented in Appendix A, follows from similar arguments to those used

in Han (1987), Sherman (1993, 1994a,b), and Abrevaya, Hausman, and Khan (2010).

Theorem 2.2. If Assumptions CS1–CS9 hold, then (i) β̂
p→ β0, and (ii)

√
n(β̂−β0)

d→ N(0, V −1ΛV −1),

where V = E[∇2τi(β0)] and Λ = 4E[∇1τi(β0)∇1τi(β0)
′].

Theorem 2.2 indicates that our rank estimator β̂ is asymptotically normal and has asymptotic

variance of regular “sandwich” structure. To make inference, Sherman (1993) proposes to use

the numerical derivative method of Pakes and Pollard (1989) to estimate the moments V and Λ

in the asymptotic variance. Hong, Mahajan, and Nekipelov (2015) study the application of the

numerical derivative method in a wide range of extremum estimators, including second-order U-

statistics. Cavanagh and Sherman (1998) suggest estimating V and Λ nonparametrically. These

methods, however, require selecting additional tuning parameters, and hence are hard to implement.

Subbotin (2007) shows that the asymptotic variance of the MRC estimator can be consistently

estimated by the nonparametric bootstrap under mild conditions, which makes the bootstrap a

potentially attractive method for carrying out inference in various empirical studies. See also Jin,

Ying, and Wei (2001) for an alternative resampling method by perturbing the objective function

repeatedly.

3 Panel Data Multinomial Choice

3.1 Static Multinomial Choice

Paralleling the increase in popularity of estimating multinomial response models in applied work

is the estimation of panel data models. The increased availability of longitudinal panel data sets

has presented new opportunities for econometricians to control for unobserved heterogeneity across

both individuals and alternatives. In linear panel data models, unobserved additive individual-

specific heterogeneity, if assumed constant over time (i.e., “fixed effects”), can be controlled for

when estimating the slope parameters by first differencing the observations.

Discrete panel data models have received a great deal of interest in both the econometrics

and statistics literature, beginning with Rasch (1960) and Andersen (1970). For a review of the

early work on this model, see Chamberlain (1984) (Section 3), and for a survey of more recent

contributions, see Arellano and Honoré (2001) (Sections 4–9). More generally, there is a vibrant

and growing literature on both partial and point identification in nonlinear panel data models.
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There are a set of recent papers that deal with various nonlinearities in models with short panels

(T <∞). See for example the work of Arellano and Bonhomme (2009), Bonhomme (2012), Graham

and Powell (2012), Hoderlein and White (2012), Chernozhukov, Fernández-Val, Hahn, and Newey

(2013), Chen, Khan, and Tang (2015), and Khan, Ponomareva, and Tamer (2016), to name a few.

In this section of the paper, we consider a panel data model for multinomial response as in

Chamberlain (1980) and Chamberlain (1984) where the indirect utility and observed choices can

be expressed as

y∗i0t = 0,

y∗ijt = x′ijtβ0 + αij − εijt,

and

yijt = 1[y∗ijt > y∗ikt, ∀k 6= j]

for i = 1, ..., n, j, k ∈ {0, 1, ..., J}, and t = 1, ..., T . In our notation, for the subscript ijt, the first

component i denotes the individual, the second component j denotes the alternative, and the third

component t denotes the time period. As in the cross-section case, we impose the (location) normal-

ization that y∗i0t = 0 for all t = 1, ..., T . Note that the random utilities specified above include a set

of fixed effects αij that are both individual and alternative specific. Throughout, no assumptions are

made on the distribution of αi ≡ (αi1, ..., αiJ)′ conditional on xi ≡ (x′i11, ..., x
′
iJ1, ..., x

′
i1T , ..., x

′
iJT )′

and εi ≡ (εi11, ..., εiJ1, ..., εi1T , ..., εiJT )′.

Here we consider identification and asymptotics with J, T fixed and n→∞. Existing results for

panel data binary choice models with fixed effects include Rasch (1960), Andersen (1970), Manski

(1987), and Chamberlain (2010), among others. The literature on multinomial choice models for

panel data is more limited. The conditional likelihood method proposed by Chamberlain (1980)

is consistent and
√
n-normal for the Logit specification. Recent semiparametric results include

Pakes and Porter (2014) and Shi, Shum, and Song (2018). The former is concerned with partial

identification, while the latter achieves point identification. Our work is in line with Manski (1987),

Pakes and Porter (2014) and Shi, Shum, and Song (2018) in the sense that our identification strategy

relies on similar group homogeneity conditions as ones adopted by the aforementioned papers.

Specifically, letting εit ≡ (εi1t, ..., εiJt)
′ and xit ≡ (x′i1t, ..., x

′
iJt)
′, we assume that for all s 6= t,

εis
d
= εit|(αi, xis, xit). To ease exposition, our results for this section will be presented by a model

with J = 2 an T = 2.11 Our approach can be modified in a straightforward manner to be applied

to data with more alternatives or longer panel.

11So the choice set is {0, 1, 2}, and we use a single pair of time periods, 1 and 2.
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Assuming εi1
d
= εi2|(αi, xi1, xi2), we have the following conditional monotone index model

P (yi11 = 1|xi, xi21 = x2) ≥ P (yi12 = 1|xi, xi22 = x2)⇔ x′i11β0 ≥ x′i12β0, (3.1)

which is the key for our identification results. The identification inequality (3.1) is analogous to

(2.3) for the cross-sectional case, but now we match and do comparisons within individuals over

time as opposed to pairs of individuals. As we will show, the analogy is not perfect as we have

to condition on “switchers”, in a way similar to the estimation of the conditional Logit model in

Andersen (1970) and the conditional maximum score estimator in Manski (1987). Besides that

here we also need a subset of the population whose regressor values for at least one alternative are

time-varying, and whose regressors for other alternatives have overlapping support over time.

Remark 3. Note that P (yi0t = 1|xi, xi2t = x2) and P (yi2t = 1|xi, xi2t = x2) are both decreasing in

x′i1tβ0, which gives additional identification inequalities for β0

P (yi01 = 1|xi, xi21 = x2) ≤ P (yi02 = 1|xi, xi22 = x2)⇔ x′i11β0 ≥ x′i12β0

and

P (yi21 = 1|xi, xi21 = x2) ≤ P (yi22 = 1|xi, xi22 = x2)⇔ x′i11β0 ≥ x′i12β0.

Furthermore, one can use analogous arguments to deduce

P (yi21 = 1|xi, xi11 = x1) ≥ P (yi22 = 1|xi, xi12 = x1)⇔ x′i21β0 ≥ x′i22β0,

P (yi01 = 1|xi, xi11 = x1) ≤ P (yi02 = 1|xi, xi12 = x1)⇔ x′i21β0 ≥ x′i22β0,

and

P (yi11 = 1|xi, xi11 = x1) ≤ P (yi12 = 1|xi, xi12 = x1)⇔ x′i21β0 ≥ x′i22β0.

These inequalities contain identification information about β0.

The monotonic relation established in (3.1) motivates one objective function we work with12

GSPn (b) =
1

n

∑
i

1[xi21 = xi22](yi11 − yi12) · sgn
(
(xi11 − xi12)′b

)
. (3.2)

Given a random sample of individuals i = 1, ..., n, the estimator of β0 is defined as the maximizer,

over a parameter space B, of (3.2).

Note that objective function (3.2) is turned off for observations where yi11 = yi12, i.e., when

individual i chooses alternative 1 in both periods 1 and 2. The objective function then uses only

12In addition to (3.2), similar objective functions can be constructed using identification inequalities provided in
Remark 3. Collectively, any one or a combination of these objective functions can be used for estimating β0.
Furthermore, this objective function can be naturally modified for the case when there are more time periods. This
is demonstrated in the empirical example in Section 5.
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switchers, or individuals whose choice changes over time.

For the case where xi21 and xi22 contain continuous components, we replace the indicator

function in (3.2) with a kernel function to yield

GSP,Kn (b) =
1

n

∑
i

Khn(xi21 − xi22)(yi11 − yi12)sgn
(
(xi11 − xi12)′b

)
. (3.3)

with Khn(·) ≡ K(·/hn), where K(·) denotes a kernel function and hn denotes a bandwidth sequence.

Under conditions analogous to Manski (1987), which we state below, β0 is point identified and the

maximizer β̂ of objective function (3.3) is a consistent estimator.13 To facilitate exposition in

stating our conditions, we first introduce the following notations.

Notation: To lighten the notation, we will suppress the subscript i in the rest of this section

whenever it is clear that all variables are for each individual. Let yit ≡ (yi0t, yi1t, yi2t)
′ for t = 1, 2

and yi ≡ (y′i1, y
′
i2)
′. For generic random vectors vjs and vjt, vj(st) ≡ vjs−vjt, e.g., x1(12) = x11−x12.

Denote ρ(b) = y1(12) · sgn(x′1(12)b) for all b ∈ Rp.

Next, we outline the regularity conditions for point identification and consistency of our semi-

parametric estimator based on the objective function (3.3).

SP1 {(yi, xi)}ni=1 is a random sample from a population P.

SP2 β0 ∈ int(B), where B = {b ∈ Rp : ‖b‖ = 1, b(1) 6= 0}.14

SP3 (i) ε1
d
= ε2|(α, x), (ii) εt|(α, x), t = 1, 2, has absolutely continuous distribution on R2.

SP4 x
(1)
1(12) w.l.o.g. has a.e. positive Lebesgue density conditional on x̃1(12) and conditional on

x2(12) in a neighborhood of x2(12) near zero.

SP5 The support of x1(12) conditional on x2(12) in a neighborhood of x2(12) near zero is not con-

tained in any proper linear subspace of Rp.

SP6 x2(12) ∈ Rp is absolutely continuously distributed with PDF fx2(12)(·) that is bounded from

above on its support and strictly positive in a neighborhood of zero.15

SP7 For all b ∈ B, fx2(12)(·) and E[ρ(b)|x2(12) = ·] are continuously differentiable on their support

with bounded first-order derivatives.

13As was the case in the cross-sectional model, point identification is not attainable when all the regressors are
discrete, but objective function (3.3) is still useful for obtaining informative bounds for β0.

14The scale normalization here follows the convention adopted by a substantial literature. See e.g., Manski (1987)
and Kim and Pollard (1990). An alternative way for scale normalization is to assume w.l.o.g. that the first element
of b has absolute value one.

15Without the absolute continuity assumption, the point identification and consistency results are still valid. This
assumption is made here only for easing the exposition in the proof.
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SP8 K : Rp 7→ R is a density function of bounded variation that satisfies: (i) supv∈Rp |K(v)| <∞,

(ii)
∫
K(v)dv = 1, and (iii)

∫
|v|1|K(v)|dv <∞, where | · |1 denotes the l1-norm.

SP9 hn is a sequence of positive numbers that satisfies: (i) hn → 0 as n→∞, and (ii) nhpn/ log n→
∞ as n→∞.

The above conditions suffice for point identification and consistency of our proposed estimator

as stated in the following theorem, which is proved in Appendix B.

Theorem 3.1. Suppose Assumptions SP1–SP9 hold. Then, (i) β0 is point identified relative to all

b ∈ B\{β0}, and (ii) β̂
p→ β0, where β̂ is a sequence of the solutions to the problem maxb∈BG

SP,K
n (b).

Next, we derive the rate of convergence and asymptotic distribution of β̂. To examine the

effect of dimensionality in the number of alternatives, we consider the general case with T = 2

and J + 1 alternatives (numbered from 0 to J , J ≥ 2). For notational convenience, denote z1 =

(x′2(12), ..., x
′
J(12))

′, z2 = y1(12), and z3 = x1(12). Accordingly, the objective function is written as

1

n

∑
i

Khn(zi1)zi2 · sgn(z′i3b).

Assumptions SP6’ - SP9’ stated below strengthen regularity conditions on the existence and finite-

ness of moments higher than those required for consistency and assume additional smoothness to

allow convergence at a faster rate.

SP6’ z1 ∈ R(J−1)p is absolutely continuously distributed with bounded density fz1(·). Both fz1(·)
and the conditional density fz1|z2 6=0,z3(·) are strictly positive in a neighborhood of zero.

SP7’ For all b ∈ B, fz1(·) and E[ρ(b)|z1 = ·] are twice differentiable on their support with bounded

second-order derivatives.

SP8’ K : R(J−1)p 7→ R is a kernel density function of bounded variation and bounded support that

satisfies: (i) supv∈R(J−1)p |K(v)| <∞, (ii)
∫
K(v)dv = 1, and (iii)

∫
‖v‖2|K(v)|dv <∞.

SP9’ hn is a sequence of positive numbers such that as n→∞: (i) hn → 0, (ii) nh
(J−1)p
n / log n→

∞, and (iii) nh
(J−1)p+3
n → 0.

Under these conditions, the following theorem establishes the rate of convergence and asymptotic

distribution of the proposed estimator as a function of the number of choices J .

Theorem 3.2. Let Assumptions SP1–SP5 and SP6’–SP9’ hold and β̂ be a sequence of the solutions

to the problem

max
b∈B

1

n

∑
i

Khn(zi1)zi2 · sgn(z′i3b).
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Then, (i) β̂ − β0 = Op((nh
(J−1)p
n )−1/3), and (ii)

(nh(J−1)pn )1/3(β̂ − β0)
d→ arg max

s∈Rp
Z(s),

where Z(s) is a Gaussian process with continuous sample paths, expected value s′V s/2, and covari-

ance kernel H(s1, s2) for s1, s2 ∈ Rp. V and H(·, ·) are defined in expressions (B.8) and (B.13),

respectively.

We note that here, in contrast to cross-sectional case, there are not “enough” matches for

standard asymptotics to hold. In addition and more interestingly, in the multinomial panel data

settings, rate of convergence depends on the number of alternatives, J . As with more alternatives,

we are matching more covariates. Proofs of the above results are collected in Appendix B.

The asymptotic distribution of β̂ does not have an analytic form, making inference difficult to

conduct. One may consider a smoothed MS approach (e.g., Horowitz (1992), Kyriazidou (1997),

and Charlier (1997)), which has the potential to yield an asymptotically normal estimator. How-

ever, smoothing the objective function involves choosing additional kernel functions and tuning

parameters. As an alternative, we recommend to use bootstrap-based procedures for inference. As

shown in Abrevaya and Huang (2005), the classic bootstrap is inconsistent for the MS estimators,

and hence we expect that the classic bootstrap does not work for our estimators, either. For the or-

dinary MS estimator, valid inference can be conducted using subsampling (Delgado, Rodŕıguez-Poo,

and Wolf (2001)), m-out-of-n bootstrap (Lee and Pun (2006)), the numerical bootstrap (Hong and

Li (2020)), and a model-based bootstrap procedure that analytically modifies the criterion function

(Cattaneo, Jansson, and Nagasawa (2020)), among other procedures. Ouyang and Yang (2020a,b)

show that Hong and Li’s (2020) and Cattaneo et al.’s (2020) methods, with certain modifications,

can be justified to be valid for kernel weighted MS estimators of similar structure. We expect the

same methods apply to the estimator of this paper.

3.2 Dynamic Multinomial Choice

We extend the base model of the previous section by examining the question of inference in a

dynamic version of the multinomial panel data model. We follow the literature here and focus our

inference problem on finite-dimensional coefficient vectors, which include, in this section, coefficients

on the lagged dependent variables.

In many situations, such as in the study of labor force and union participation, transportation

choice, or health insurance carrier, it is observed that an individual who has experienced an event

or made some choice in the past is more likely to experience the event or make the same choice

in the future as compared to another individual who has not experienced the event or made that

choice. They discuss two explanations for this phenomenon. The first explanation is the presence
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of ”true state dependence” in the sense that the lagged choice/decision enters the model as an

explanatory variable. So having experienced the event in the past, an economic agent is more likely

to experience it in the future (due to familiarity, for example). The second explanation that is

advanced to explain this empirical regularity is the presence of serial correlation in the unobserved

transitory errors that are in the model. This explanation revolves around heterogeneity (rather

than state dependence): some individuals are more likely to make a specific choice than others due

to unobserved factors. The econometrics literature on the topic has provided various models to

disentangle these two explanations.

We contribute to this literature. In particular, we expand results from the previous section

by presenting identification and estimation methods for multinomial response models with state

dependence that allow for the presence of unobservable individual heterogeneity in panels with a

large number of individuals observed over a small number of time periods (i.e., n→∞ and T <∞).

To the best of our knowledge, this is the first semiparametric (distribution-free) approach in the

literature to study this problem.

Our results focus on point identification. As in Section 3.1, we illustrate our approach with

J = 2. A particular model that we consider can be expressed as follows.

y∗i0t = 0,

y∗i1t = x′i1tβ0 + γ0yi1t−1 + αi1 − εi1t,

y∗i2t = x′i2tβ0 + αi2 − εi1t,

and yijt = 1[y∗ijt > y∗ikt,∀k 6= j] for t = 1, 2, ..., T . Following the literature, we define period 0

as the initial period, and assume that yi0 ≡ (yi00, yi10, yi20)
′ are observed, although the model is

not specified in the initial period. Throughout this section, we focus on the case with T = 3, the

minimum T required for applying our identification approach.

In this model, the parameters of interest are θ0 ≡ (β′0, γ0)
′. Identification is more complicated

in dynamic models, even for binary choice. For example, Chamberlain (1985) shows that β0 is not

identified when there are three time periods (T = 2).16 Honoré and Kyriazidou (2000) show point

identification17 of β0 and γ0 when there are four time periods (T = 3). Their identification is based

on conditioning on the subset of the population whose regressors do not change in periods 2 and 3.

Finally, Khan, Ponomareva, and Tamer (2019) derive sharp bounds for preference parameters in

dynamic binary choice models with fixed effects under weak conditions (allowing for time trends,

time dummies, etc.).

16But γ0 is identified if β0 = 0.
17Their point identification result requires further restrictions on the serial behavior of the exogenous regressors that

rules out, among other things, time trends as regressors. Our identification result for the dynamic multinomial
choice imposes similar restrictions and so also does not allow for time trends as regressors.
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Our identification strategy for the dynamic multinomial response model is based on conditioning

on the sub-population whose regressors are time-invariant in different manners, depending on which

alternative they are associated with. Specifically, in the three alternatives, four periods setting

above, we condition on the sub-population whose regressor values for alternative 2 do not change

in periods 1, 2, and 3 and whose regressor values for choice 1 do not change over time in periods 2

and 3.

After such conditioning, the problem reduces to identifying parameters in a dynamic binary

choice model, for which existing methods can be applied. For example, if the post-conditioning

model is a dynamic Logit, which would arise if we begin with a dynamic multinomial Logit, we can

use the method proposed in Honoré and Kyriazidou (2000), which is valid for four time periods.

An attractive feature of their procedure is that when all regressors are discrete, the estimator will

converge at the parametric rate with an asymptotically normal distribution, so conducting inference

is relatively easy. We demonstrate both parametric (Logit) and semiparametric methods for the

dynamic multinomial response model considered in order.

For the dynamic multinomial Logit model, we consider the following conditional likelihood

function:18∑
i

1[xi21 = xi22 = xi23, xi12 = xi13]1[yi11 6= yi12] · log

(
exp ((xi11 − xi12)′b+ r(yi10 − yi13))yi11

1 + exp ((xi11 − xi12)′b+ r(yi10 − yi13))

)
.

Note that scale normalization is no longer needed for maximum likelihood estimation. Honoré and

Kyriazidou (2000) propose a multinomial Logit estimator whose identification and estimation are

based on sequences of choices where the individual switches between alternatives at least once during

the periods 1 and 2. For general J and T , the number of such sequences is (J + 1)T+1 − (J + 1)3,

then coding the estimator may be cumbersome, especially for cases with large J or large T .19 Our

estimator differs from theirs, as here we effectively transform a multinomial response problem to

a binary choice problem through additionally matching xi21 and xi22, which makes it considerably

easier to implement.

We note here that in the case when all the regressors across all choices are discretely distributed,

the estimator can be shown to converge at the parametric rate with a limiting normal distribution,

as was shown in Honoré and Kyriazidou (2000) for the binary choice model.

For the semiparametric model, the objective function is of the form

1

n

∑
i

1[xi21 = xi22 = xi23, xi12 = xi13](yi11 − yi12) · sgn
(
(xi11 − xi12)′b+ r(yi10 − yi13)

)
.

Note that for point identification, we require that at least one of the components of the regressors

18Throughout this section, we deliberately keep the notation as close as possible to Honoré and Kyriazidou (2000).
19For example, in our empirical illustration, we have J = 3 and maxi Ti = 77 (unbalanced panel).
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for alternative 1 to be continuously distributed on a large support. Consequently, when matching

regressors for this choice, we would need to assign kernel weights as illustrated in previous sections.

Denote θ = (b′, r)′, zi1 = (x′i2(12), x
′
i2(23), x

′
i1(23))

′, zi2 = yi1(12), and zi3 = (x′i1(12), yi1(03))
′. In

practice, we work with the objective function

GDP,Kn (θ) =
1

n

∑
i

Khn(zi1)zi2 · sgn(z′i3θ). (3.4)

Under the standard “initial conditions” assumption as in e.g., Honoré and Kyriazidou (2000),20

the maximizer θ̂ of this objective function can be shown to be consistent, although as in the static

model, the limiting distribution is nonstandard.

Remark 4. The objective function (3.4) is constructed based on the following identification in-

equality, which is proved in Appendix B.

P (A|xi, αi,Ω) ≥ P (B|xi, αi,Ω)⇔ x′i11β0 + γ0yi10 ≥ x′i12β0 + γ0yi13,

where events Ω ≡ {xi21 = xi22 = xi23, xi12 = xi13}, A ≡ {yi10 = d0, yi11 = 1, yi12 = 0, yi13 =

d3}, and B ≡ {yi10 = d0, yi11 = 0, yi12 = 1, yi13 = d3} for (d0, d3) ∈ {0, 1}2. The key idea, as

outlined above, is to turn the multinomial response model into a binary choice model by matching the

covariates for all but one inside alternatives in different time periods and use data on “switchers”.

We next present conditions that are sufficient for consistency and asymptotic distribution of

the proposed estimator θ̂. As in Section 3.1, we suppress the subscript i to lighten the notation.

Denote ψ(θ) = z2 · sgn(z′3θ) for all θ ∈ Rp+1. We assume:

DP1 {(yi, xi)}ni=1 is a random sample from a population P.

DP2 θ0 ∈ int(Θ), where Θ = {θ = (b′, r)′ ∈ Rp+1 : ‖θ‖ = 1, b(1) 6= 0}.

DP3 For almost all (x, α), (i) εt ⊥ (x, y0)|α holds for all t = 1, 2, 3 and (ii) εt|α is i.i.d. over time21

having absolutely continuous distribution on R2.

DP4 z
(1)
3 w.l.o.g. has a.e. positive Lebesgue density conditional on z̃3 and conditional on z1 in a

neighborhood of z1 near zero.

DP5 The support of z3 conditional on z1 in a neighborhood of z1 near zero is not contained in any

proper linear subspace of Rp.
20Specifically, for the model at hand, the initial conditions assumption would be that P (yij0 = 1|xi, αi) = pij0(xi, αi)

for j = 0, 1, 2, where the functional form of pij0(·, ·) is left unspecified. With this assumption, we do not require
specifying the model in the initial period, since the value of the dependent variable is not assumed to be known in
periods prior to the sample. It is worth noting that, taken together, pij0(·, ·) and Fαi|xi give the joint distribution
of (yi00, yi10, yi20, αi)

′.
21Note that it is possible to generalize the results in this section to allow the distribution of εt|α to vary across

individuals, provided that it does not differ over time for a given individual.
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DP6 z1 ∈ R3p is absolutely continuously distributed with bounded density fz1(·). Both fz1(·) and

the conditional density fz1|z2 6=0,z3(·) are strictly positive in a neighborhood of zero.

DP7 For all θ ∈ Θ, fz1(·) and E[ψ(θ)|z1 = ·] are twice differentiable on their support with bounded

second-order derivatives.

DP8 K : R3p 7→ R is a kernel density function of bounded variation and bounded support that

satisfies: (i) supv∈R3p |K(v)| <∞, (ii)
∫
K(v)dv = 1, and (iii)

∫
‖v‖2|K(v)|dv <∞.

DP9 hn is a sequence of positive numbers such that as n→∞: (i) hn → 0, (ii) nh3pn / log n→∞,

and (iii) nh3p+3
n → 0.

The above conditions suffice for point identification and asymptotic properties of our proposed

estimator as stated in the following theorem, proved in Appendix B.

Theorem 3.3. Suppose Assumptions DP1–DP9 hold. Then, (i) θ0 is identified relative to all

θ ∈ Θ \ {θ0}, (ii) θ̂
p→ θ0, (iii) θ̂ − θ0 = Op((nh

3p
n )−1/3), and (iv)

(nh3pn )1/3(θ̂ − θ0)
d→ arg max

s∈Rp+1
Z(s),

where Z(s) is a Gaussian process with continuous sample paths, expected value s′V s/2, and covari-

ance kernel H(s1, s2) for s1, s2 ∈ Rp+1. V and H(·, ·) are defined in expressions (B.8) and (B.13),

respectively.

Remark 5. The conclusions of Theorem 3.3 can be generalized to general cases with J+1 alterna-

tives. Particularly, with straightforward adjustments to Assumptions DP1–DP9, we can conclude

that θ̂−θ0 = Op((nh
(2J−1)p
n )−1/3) and (nh

(2J−1)p
n )1/3(θ̂−θ0)

d→ arg maxs∈Rp+1 Z(s) where Z(·) is of

the same form as defined in Theorem 3.3. For inference, the discussion on the use of the bootstrap

after Theorem 3.2 applies here as the estimator has essentially the same structure.

3.2.1 Identification with More General Feedback Effects

The identification approach described in Remark 4 extends to dynamic model with more general

“feedback” effects:

y∗i0t = 0,

y∗ijt = x′ijtβ0 + γ0,j1yi1t−1 + γ0,j2yi2t−1 + αij − εijt, j = 1, 2,

where γ0,jk is the feedback effect when a choice of alternative k at t−1 is followed by choice j at time

t, where j, k ∈ {1, 2}. Note that due to location normalization and multicollinearity, γ0,0j and γ0,j0

for all j = 1, 2 are not identified22 (or equivalently, we impose normalization γ0,0j = γ0,j0 = 0 for all

22This is similar to the dynamic multinomial Logit model considered in Magnac (1997).
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j = 1, 2). If we further assume all “cross” feedback parameters are zero, i.e., γ0,jk = 0 for all j 6= k,

then (β′0, γ0,11, γ0,22)
′ can be identified based on identification inequalities similar to that presented

in Remark 4. For example, letting E = {xi21 = xi22 = xi23, xi12 = xi13, yi20 = yi21 = yi22 = 0}, we

have

P (A|xi, αi, E) ≥ P (B|xi, αi, E)⇔ x′i11β0 + γ0,11yi10 ≥ x′i12β0 + γ0,11yi13,

for all d0 6= d3. As pointed out by a referee, “No cross feedback” assumption is restrictive and may

not be intuitively plausible when alternatives are close substitutes. From this point of view, this

specification may be more reasonable for the case where alternatives are not very similar to each

other. For the model with unrestricted cross feedback effects (with exception of the normalization

imposed on γ0,0j and γ0,j0), it is known in the literature (see Section 4.3 of Honoré and Kyriazidou

(2000)) that the parameters are identified with a multinomial Logit specification, heavily relying

on distributional assumptions leading to a logistic distribution (with the IIA property). When no

distributional restrictions are imposed, we can still point identify β0, for example, via

P (A|xi, αi, E) ≥ P (B|xi, αi, E)⇔ x′i11β0 ≥ x′i12β0,

for all d0 = d3. Bounds for feedback parameters can be obtained by identification restrictions

constructed using “logical contradiction” as in Remark 2. As an illustrating example, consider

event Υ = {xi12 = xi13, xi22 = xi23, yi20 = yi21 = yi22 = 0}. Then we can write

P (A|xi, αi,Υ) > P (B|xi, αi,Υ)

⇒¬{x′i11β0 + γ0,11yi10 ≤ x′i12β0 + γ0,11yi13, x
′
i21β0 + γ0,21yi10 ≥ x′i22β0 + γ0,21yi13},

for all d0 6= d3. However, a detailed analysis of (partial) identification based on inequalities of

this type is beyond the scope of this paper as it would involve a completely different identification

approach than the ones introduced in this paper.

4 Simulation Study

In this section, we investigate the relative finite sample performance of the proposed estimation

procedures in cross-sectional and panel data (both static and dynamic) designs. We generate 1000

replications for each of the six designs described below, using sample sizes n ranging from 250

to 10000. In all designs, the regressor vector always has one and only one component that is

continuously distributed with all the rest being binary,23 and the error vector follows a multivariate

normal (MVN) distribution that allows for correlation across components.

23We expect that the design of the regressors in Monte Carlo studies may have a large effect on the performance
of our matching-based methods. In order to investigate this issue, we also run experiments with all continuous
regressors and report the results in Appendix C.
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For the cross-sectional model, we generate data from three designs, varying the number of

regressors and the number of alternatives in the choice set. The first two are for a model with 3

alternatives (J = 2), and we increase the number of regressors p from 3 to 5. This is meant to give

an idea of the sensitivity of our estimator to the dimensionality of the regressor space. In the third

design, we considered 3 regressors but 5 alternatives. Here, we aim to examine the sensitivity of

our procedure to the dimensionality of the choice space.

For the panel data model, we generated data from two designs. The first is for a static panel

data model with 3 alternatives, 3 regressors, and 2 time periods. The second panel data design is

for the dynamic model where there are 3 alternatives and 3 regressors with the second of the two

binary regressors being the lagged choice. For this model, we simulate 4 periods of data as this is

the minimum length of panel required for our identification approach.

For each of these six designs and varying sample sizes, we report the mean bias (MEAN) and root

mean squared error (RMSE) of the corresponding estimator. Since these statistics can be sensitive

to outliers, we also present the median bias (MED) and the median absolute error (MAE). Below

we state the details of each of the designs considered and the Monte Carlo results for our estimators

in order.

Our benchmark design (Design 1) for the cross-sectional model is based on the data generating

process (DGP) with choice set {0, 1, 2} and indirect utility functions:

y∗i0 = 0,

y∗ij = x
(1)
ij + β1x

(2)
ij + β2x

(3)
ij − εij , j = 1, 2,

where x
(1)
ij , x

(2)
ij , x

(3)
ij denote the 3 components of the vector xij , β1 = β2 = 1, (x

(1)
i1 )i=1,...,n are

independent N(0, 1) random variables, (x
(2)
i1 , x

(3)
i1 , x

(1)
i2 , x

(2)
i2 , x

(3)
i2 )i=1,...,n are independent Bernoulli

random variables with parameter 0.5, and

(εi1, εi2)i=1,...,n
iid∼ MVN

((
0

0

)(
1 0.5

0.5 1

))
.

To implement our weighted rank correlation estimator, we use the sixth-order Gaussian kernel and

bandwidth hn = n−1/5. Table 1 reports the results for this benchmark design.
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Table 1: (Design 1) Cross-Sectional Design with J = 2 and p = 3

β1 β2

MEAN RMSE MED MAE MEAN RMSE MED MAE

n = 250 0.0256 0.2853 0.0041 0.1772 0.0258 0.2831 0.0027 0.1757

n = 500 0.0150 0.1858 0.0013 0.1055 0.0079 0.1820 0.0009 0.0999

n = 1000 0.0039 0.1192 0.0008 0.0683 0.0022 0.1170 -0.0001 0.0656

As our cross-sectional estimator is “localized” (matching covariates associated with J − 1 al-

ternatives), one may be worried about that the dimensionality of the design (both in the regressor

space and choice space) may have a substantial effect on the simulation results. To investigate

the finite sample performance of the proposed estimator in higher dimensional, more complicated

designs, we consider the following two modifications of the benchmark design:

- Design 2: We keep the choice set and error distribution unchanged while adding two regressors

to the benchmark design. Specifically, we consider the DGP with indirect utility functions:

y∗i0 = 0,

y∗ij = x
(1)
ij + β1x

(2)
ij + β2x

(3)
ij + β3x

(4)
ij + β4x

(5)
ij − εij , j = 1, 2,

where β1 = β2 = 1, β3 = β4 = 0, (x
(1)
i1 )i=1,...,n are independent N(0, 1) random vari-

ables, and (x
(2)
i1 , x

(3)
i1 , x

(4)
i1 , x

(5)
i1 , x

(1)
i2 , x

(2)
i2 , x

(3)
i2 , x

(4)
i2 , x

(5)
i2 )i=1,...,n are independent Bernoulli ran-

dom variables with parameter 0.5. The DGP is essentially the same as that for the benchmark

design and the only difference is that two additional regressors are included in the estimation.

- Design 3: We keep the indirect utility functions the same as that for the benchmark design,

while enlarge the choice set to be {0, 1, 2, 3, 4}, i.e., we consider the design with

y∗i0 = 0,

y∗ij = x
(1)
ij + β1x

(2)
ij + β2x

(3)
ij − εij , j = 1, 2, 3, 4,

where β1 = β2 = 1, (x
(1)
i1 )i=1,...,n are independent N(0, 1) random variables, (x

(2)
i1 , x

(3)
i1 )i=1,...,n

and (x
(l)
ij )i=1,...,n;j=2,3,4;l=1,2,3 are independent Bernoulli random variables with parameter 0.5,

and

(εi1, εi2, εi3, εi4)i=1,...,n
iid∼ MVN




0

0

0

0




1 0.5 0.5 0.5

0.5 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1


 .
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The results of these two experiments, using the same kernel function and bandwidth as in Design

1, are summarized in Tables 2 and 3, respectively.24

Table 2: (Design 2) Cross-Sectional Design with J = 2 and p = 5

β1 β2

MEAN RMSE MED MAE MEAN RMSE MED MAE

n = 250 0.0276 0.3265 0.0100 0.2253 0.0302 0.3350 0.0081 0.2324

n = 500 0.0197 0.2280 0.0048 0.1491 0.0205 0.2320 0.0035 0.1499

n = 1000 0.0027 0.1480 -0.0009 0.0896 0.0024 0.1467 -0.0013 0.0903

Table 3: (Design 3) Cross-Sectional Design with J = 4 and p = 3

β1 β2

MEAN RMSE MED MAE MEAN RMSE MED MAE

n = 250 -0.0239 0.5156 -0.0421 0.3790 -0.0116 0.5025 -0.0246 0.3544

n = 500 0.0130 0.4239 -0.0033 0.2749 0.0043 0.4219 -0.0139 0.2803

n = 1000 0.0113 0.3037 -0.0001 0.1815 0.0114 0.3149 0.0010 0.2001

As our results demonstrate, the performance is in line with the asymptotic theory. Specifically,

the cross-sectional estimator is root-n consistent as both the bias and RMSE shrink at the paramet-

ric rate. This seems true regardless of the number of regressors, though as expected performance

for each sample size deteriorates with the number of regressors. However, that seems not the case

as we increase the size of the choice set. As seen in Table 3, with 5 alternatives, the finite sample

performance is relatively poor, and furthermore, does not improve with larger sample sizes as well

as it did in the other designs. Thus it appears to us that for this model, the adversarial effects of

dimensionality lie in the choice dimension and not as much in the regressor dimension.25

We then turn to examine the finite sample properties of the MS estimators for panel data

multinomial response models. We start from the static panel model and consider the design (Design

4) with a choice set {0, 1, 2} and a panel of two time periods.26 The indirect utility functions for

24To conserve space, we only report the results for β1 and β2 in Design 2.
25It is not too surprising that our localized estimator performs relatively better in Design 2 than in Design 3. To

implement the proposed estimator, we need to match (J − 2) × p binary regressors, which reduces the “effective”
sample size. This number for Design 2 is 5, while for Design 3, it is 9. The results presented in Appendix C show
that this curse of dimensionality may be alleviated when more of the regressors are continuous.

26Intuitively, we would expect that longer panels would improve the finite sample performance of our panel estimators.
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individual i in time period t ∈ {1, 2} are

y∗i0t = 0,

y∗ijt = x
(1)
ijt + β1x

(2)
ijt + β2x

(3)
ijt + αij − εijt, j = 1, 2,

where β1 = β2 = 1 are time-invariant, (x
(1)
i1t)i=1,...,n;t=1,2 are independent N(0, 1) random variables,

(x
(l)
i1t)i=1,...,n;t=1,2;l=2,3 and (x

(l)
i2t)i=1,...,n;t=1,2;l=1,2,3 are independent Bernoulli random variables with

parameter 0.5, and

(εi11, εi21, εi12, εi22)i=1,...,n
iid∼ MVN




0

0

0

0




1 0.5 0.5 0.5

0.5 1 0.5 0.5

0.5 0.5 1 0.5

0.5 0.5 0.5 1


 .

The fixed effects are generated as αi1 = (x
(1)
i11 +x

(1)
i12)/4 and αi2 = (x

(1)
i21 +x

(1)
i22−1)/4. To implement

our MS estimator, we use the Epanechnikov kernel and bandwidth hn = 6 · (n log n)−1/4. In Tables

4 and 5, we report respectively the results for this static panel design using one-step and two-step

MS estimators.27

27That is, we implement our MS method proposed in Section 3 to get (β̂1, β̂2) in the first step estimation, calculate

the index ûijt = x
(1)
ijt + β̂1x

(2)
ijt + β̂2x

(3)
ijt , and then run a second step MS estimation by matching on ûijs = ûijt for

s 6= t.
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Table 4: (Design 4) Static Panel Design with J = 2, p = 3, and t ∈ {1, 2}

β1 β2

MEAN RMSE MED MAE MEAN RMSE MED MAE

n = 500 0.0019 0.4974 -0.0065 0.3711 0.0008 0.4897 -0.0053 0.3641

n = 1000 0.0244 0.4594 0.0050 0.3067 0.0175 0.4643 0.0004 0.3346

n = 2000 0.0199 0.4188 0.0125 0.2720 0.0356 0.4116 0.0159 0.2766

n = 5000 0.0125 0.3463 -0.0033 0.2220 0.0160 0.3228 -0.0017 0.2245

n = 10000 0.0087 0.2768 0.0000 0.1768 0.0026 0.2664 -0.0032 0.1760

Table 5: (Design 4, Two-step) Static Panel Design with J = 2, p = 3, and t ∈ {1, 2}

β1 β2

MEAN RMSE MED MAE MEAN RMSE MED MAE

n = 500 0.0271 0.4601 0.0102 0.3025 0.0475 0.4790 0.0214 0.3364

n = 1000 0.0377 0.4268 0.0115 0.2703 0.0194 0.4285 -0.0009 0.2905

n = 2000 0.0433 0.3997 0.0166 0.2592 0.0536 0.3892 0.0126 0.2630

n = 5000 0.0185 0.3352 -0.0048 0.1954 0.0266 0.3157 0.0023 0.2103

n = 10000 0.0120 0.2722 0.0036 0.1738 0.0098 0.2625 -0.0017 0.1720

Our dynamic panel design (Design 5) has the same choice set as the static design but four time

periods (t ∈ {0, 1, 2, 3}). The indirect utility functions are

y∗i0t = 0, t = 0, 1, 2, 3,

y∗ij0 = x
(1)
ij0 + βx

(2)
ij0 + αij − εij0, j = 1, 2,

y∗i1t = x
(1)
i1t + βx

(2)
i1t + γyi1t−1 + αi1 − εi1t, t = 1, 2, 3,

y∗i2t = x
(1)
i2t + βx

(2)
i2t + αi2 − εi2t, t = 1, 2, 3,

where (β, γ) = (1, 0.5), yi1t−1 = 1[y∗i1t−1 > max{y∗i0t−1, y∗i2t−1}], (x
(1)
i1t)i=1,...,n;t=0,1,2,3 are inde-

pendent N(0, 1) random variables, (x
(2)
i1t)i=1,...,n;t=0,1,2,3 and (x

(l)
i2t)i=1,...,n;t=0,1,2,3;l=1,2 are indepen-

dent Bernoulli random variables with parameter 0.5, αi1 = (x
(1)
i10 + x

(1)
i11 + x

(1)
i12 + x

(1)
i13)/8 and

αi2 = (x
(1)
i20 +x

(1)
i21 +x

(1)
i22 +x

(1)
i23− 2)/8, and (εi1t, εi2t)i=1,...,n;t=0,1,2,3 are independent random vectors
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drawn from

MVN

((
0

0

)(
1 0.5

0.5 1

))
.

We use the same kernel and bandwidth as the static design above. One-step and two-step estimation

results for this design are summarized in Tables 6 and 7, respectively.

For the panel data results, the static panel data estimator also appears to be consistent but

appears to converge more slowly in terms of bias and RMSE. It takes sample sizes that are larger

than 2000 before the estimator performs adequately well.28 For the semiparametric dynamic panel

data model, results seem worse still and appear to improve even more slowly with increases in

the sample size. In both cases, the two-step estimator improves finite sample performance a little,

particularly in the dynamic model.

Table 6: (Design 5) Dynamic Panel Design with J = 2, p = 3, and t ∈ {0, 1, 2, 3}

β γ

MEAN RMSE MED MAE MEAN RMSE MED MAE

n = 500 -0.0270 0.4753 0.0026 0.3292 -0.0412 0.3025 -0.0473 0.2608

n = 1000 0.0010 0.4720 0.0020 0.3174 -0.0339 0.2984 -0.0536 0.2542

n = 2000 -0.0016 0.4677 0.0121 0.3053 -0.0242 0.2964 -0.0403 0.2512

n = 5000 -0.0234 0.4185 -0.0003 0.2225 -0.0214 0.2927 -0.0291 0.2577

n = 10000 -0.0107 0.3993 0.0002 0.2143 -0.0104 0.2765 -0.0221 0.2233

Table 7: (Design 5, Two-step) Dynamic Panel Design with J = 2, p = 3, and t ∈ {0, 1, 2, 3}

β γ

MEAN RMSE MED MAE MEAN RMSE MED MAE

n = 500 -0.0021 0.4205 -0.0051 0.2282 -0.0365 0.3002 -0.0455 0.2631

n = 1000 0.0203 0.4158 0.0079 0.2198 0.0055 0.2897 0.0196 0.2502

n = 2000 0.0139 0.4051 0.0031 0.2129 -0.0150 0.2795 -0.0420 0.2498

n = 5000 0.0456 0.3980 0.0062 0.2108 -0.0211 0.2619 -0.0270 0.2389

n = 10000 0.0124 0.3807 -0.0014 0.1999 -0.0111 0.2582 -0.0187 0.2256

As a final component of our simulation study, we explore how the conditional Logit estimator

performs in the dynamic panel design. As the point identification of Logit does not rely on the

28This result is not that surprising. As all but one of the regressors are binary, our methods use “almost perfectly”
matched samples, which only make up a small fraction of the total sample. See Appendix C for simulation results
for designs with all continuous regressors.
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existence of a continuous regressor, we let all regressors in Design 5 be independent Bernoulli random

variables with parameter 0.5. It is easy to show that the Logit estimator in this case would be root-

n consistent if the conditional likelihood function is correctly specified. However, with errors not

satisfying the IIA property, we would expect the Logit estimator to be inconsistent. The simulation

here aims to explore the sensitivity of the parametric estimator to model misspecification. In Table

8 for Logit results, inconsistency is clearly demonstrated with biases exceeding 50% even at sample

size of 10000. The inconsistency is to be expected as the Logit estimator is based on i.i.d. type I

extreme value errors.

Table 8: (Design 5, Logit) Dynamic Panel Design with J = 2, p = 3, and t ∈ {0, 1, 2, 3}

β γ

MEAN RMSE MED MAE MEAN RMSE MED MAE

n = 500 0.6760 0.8963 0.6036 0.3433 1.5346 3.6605 0.4860 2.0067

n = 1000 0.6535 0.7731 0.6337 0.2569 1.8503 3.8376 2.0596 2.3813

n = 2000 0.5875 0.6585 0.5627 0.1903 1.8067 3.5593 1.4309 2.3469

n = 5000 0.5863 0.6171 0.5799 0.1302 1.6068 2.9385 0.8063 1.3635

n = 10000 0.5858 0.6052 0.5844 0.0994 1.0708 2.1002 0.5929 0.8105

5 Empirical Illustration

In this section, we present an empirical illustration of our proposed estimators by applying it to the

often used optical-scanner panel data set on purchases of saltine crackers in the Rome (Georgia)

market, collected by Information Resources Incorporated. The data set contains information on all

purchases of crackers (3292) of 136 households over a period of two years, including brand choice,

the actual price of the purchased brand and shelf prices of other brands, and whether there was

a display or newspaper feature of the considered brands at the time of purchase. A subset of this

data set was analyzed in Jain, Vilcassim, and Chintagunta (1994) and Paap and Frances (2000).

Table 9: Data Characteristics of Saltine Crackers

Sunshine Keebler Nabisco Private

Market Share 0.07 0.07 0.54 0.32

Display 0.13 0.11 0.34 0.10

Feature 0.04 0.04 0.09 0.05

Average Price 0.96 1.13 1.08 0.68
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Table 9 summarizes some data characteristics of saltine crackers. There are three major national

brands in the database: Sunshine, Keebler, and Nabisco, with market shares of 7%, 7%, and 54%,

respectively. Local brands are aggregated and referred to in the table as “Private” label, which has a

market share of 32%. The data set also includes three explanatory variables, two of which are binary,

and the other one is continuous. The first binary explanatory variable, which we will refer to as

“display”, denotes whether or not a brand was on special display at the store at the time of purchase.

The second binary explanatory variable, which we will refer to as “feature”, denotes whether or

not a brand was featured in a newspaper advertisement at the time of purchase. Table 9 reports

fractions for the binary variables, so for example, the numbers in the row of “display” correspond to

fractions of purchase occasions on which each brand is on display. The third explanatory variable

we will use is the “price” that corresponds to the price of a brand.29 This explanatory variable

has rich enough support in the data set that we feel that treating it as a continuously distributed

random variable is a reasonable approximation. Table 9 reports the sample average of the price of

each brand over the 3292 purchases.30

There are two features of this data set that make it particularly suitable to apply our semi-

parametric procedures. One is that there is one continuous regressor (price) which is needed for

point identification. Importantly, the other regressors are binary, so the “matching” part of our

procedure can be implemented relatively easily. The second important feature is that the data is a

panel data set based on 136 households making purchase decisions over a period of two years. Thus

we can use this data to apply both our cross-sectional (pooled) estimator and panel data (static

and dynamic) estimators.

Specifically, here we apply our proposed estimators to the multinomial response model with

four alternatives (brands) and three regressors. For each of these estimators, we also implement

their corresponding (conditional) likelihood counterparts for comparison. Existing work such as

Jain, Vilcassim, and Chintagunta (1994) and Paap and Frances (2000) used this data to estimate

multinomial response models with random coefficients. Our semiparametric approach would also be

used to examine how sensitive their results and conclusions are to the parametric assumptions they

imposed, either in the way of multinomial Logit/Probit specification or modeling unobserved het-

erogeneity with random coefficients. This can be done by comparing the estimates of the regression

coefficients obtained using our methods to those obtained by theirs.

Note that the data set is an unbalanced panel data with n = 136 households and the number

of purchases varying across households i (≡ Ti, 14 ≤ Ti ≤ 77). In what follows, we write J = {1 =

Nabisco, 2 = Sunshine, 3 = Keebler, 4 = Private} for the choice set. For each household i, brand j,

and purchase t, we use x
(1)
ijt , x

(2)
ijt , and x

(3)
ijt to denote the three explanatory variables: the logarithm

of “price”, “display”, and “feature”, respectively.

29The unit of price in the raw data is cents. Here we convert it to dollars.
30We abstract here from issues of endogeneity of price for illustrative purposes.
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For the cross-sectional estimator, we model the indirect utility of household i for brand j in the

t-th purchase as

y∗ijt = −x(1)ijt + β1x
(2)
ijt + β2x

(3)
ijt + αj − εijt, j ∈ J , t = 1, ..., Ti,

31

where the coefficient on x
(1)
ijt is normalized to be −1, αj is an alternative-specific intercept, and

(β1, β2) are regression coefficients to be estimated. εijt is the unobserved scalar disturbance term.

The observed choice is defined as yijt = 1[y∗ijt > y∗ikt,∀k ∈ J \{j}]. Besides, throughout this section,

we denote xijt = (x
(1)
ijt , x

(2)
ijt , x

(3)
ijt )
′, x̃ijt = (x

(2)
ijt , x

(3)
ijt )
′, xit = (x′i1t, x

′
i2t, x

′
i3t, x

′
i4t)
′, xi = (x′i1, ..., x

′
iTi

)′,

yit = (yi1t, yi2t, yi3t, yi4t)
′, and yi = (y′i1, ..., y

′
iTi

)′.

To implement our cross-sectional rank estimator, we pool the cross-section (i) and “time-series”

(t) aspects of the panel. The estimation was implemented in R, using the differential evolution

algorithm to attain a global optimum of the objective function of the following form with respect

to (b1, b2).

∑
i

Ti−1∑
s=1

∑
t>s

Khn(x
(1)
i(−1)s − x

(1)
i(−1)t)1[x̃i(−1)s = x̃i(−1)t](yi1s − yi1t) · sgn((xi1s − xi1t)′b)

+
∑
i 6=m

Ti∑
s=1

Tm∑
t=1

Khn(x
(1)
i(−1)s − x

(1)
m(−1)t)1[x̃i(−1)s = x̃m(−1)t](yi1s − ym1t) · sgn((xi1s − xm1t)

′b), (5.1)

where b = (−1, b1, b2)
′ and x

(1)
i(−1)t (x̃i(−1)t) denotes the vector collecting x

(1)
ijt (x̃ijt) for all j ∈ J \{1}.

To compute (5.1), we use the fourth-order Gaussian kernel function and bandwidth hn = c · σ̂n−1/7,
where σ̂ is the standard deviation of the matching variable and c is a constant. These choices

consider the scale of the data and satisfy Assumptions CS6 and CS8–CS9. To test the sensitivity

of our method to the choice of bandwidths, we experiment with several values of c, ranging from

0.5 to 2. Results were not sensitive to this choice, so we only report results for c = 1.

To attain confidence intervals (CI) we employ the nonparametric bootstrap for clustered data.

Let β̂ = (β̂1, β̂2)
′ denote the MRC estimate of β = (β1, β2)

′. The 95% confidence intervals for β1

and β2 are constructed by the following algorithm:

1. Draw (y∗′i , x
∗′
i )′, i = 1, ..., n, independently with replacement from the original sample.32

2. Estimate β from objective function (5.1), using the bootstrap sample obtained in step 1.

3. Repeat steps 1 and 2 for B = 200 times to get a series of estimates of β, {β̂∗(b)}
B
b=1.

31Note that one can always obtain an expression as in (2.1) by subtracting the indirect utility for one (base) alternative
from the other indirect utilities. Our estimator is numerically invariant to the choice of the base alternative.

32Note that here we estimate a pooled model using short panel data. To account for heteroskedasticity across
“clusters” of observations (i.e., household i), our bootstrap resamples the cluster i rather than both i and t.
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4. Let Qβ̂∗ (τ) denote the τ -th quantile of {β̂∗(b)}
B
b=1, 0 ≤ τ ≤ 1. The 95% confidence interval for

β can be constructed as [β̂ − (Qβ̂∗(0.975)− β̂), β̂ − (Qβ̂∗(0.025)− β̂)]. Alternatively, one can

use the normal approximation by computing [β̂l− 1.96× ŝe(β̂l), β̂l + 1.96× ŝe(β̂l)] for l = 1, 2,

where

ŝe(β̂l) =

√√√√ 1

B − 1

B∑
b

(β̂∗l(b) −
¯̂
β∗l(b))

2

with
¯̂
β∗l(b) = B−1

∑B
b β̂
∗
l(b).

Point estimates and confidence intervals for each of the two coefficients on the binary regressors

are reported in Table 10. For the semiparametric estimator, we place the 95% confidence regions

on top of the normal approximation results. For comparison purposes, the table also reports results

from estimators for two (pooled) parametric models, multinomial Logit and multinomial Probit.33

Recall that the two parametric methods and our semiparametric estimator impose different scale

normalization. To facilitate the comparison, we report the ratios of the coefficients of the two

binary regressors to the absolute value of the coefficient on x
(1)
ijt .

Table 10: Parametric and Semiparametric Estimates for Cross-Sectional Model

β1 95% CI of β1 β2 95 % CI of β2

Semiparametric 0.0166 (-0.0246, 0.0352) 0.1192 (0.0765, 0.2266)

(-0.0227, 0.0559) (0.0350, 0.2034)

Multinomial Logit 0.0330 (-0.0513, 0.1174) 0.1573 (-0.0029, 0.3175)

Multinomial Probit 0.0155 (-0.0437, 0.0747) 0.1108 (0.0369, 0.1847)

As we can see, these results are not quite different. For the parametric estimators, multinomial

Probit relative coefficients for x
(2)
ijt and x

(3)
ijt are 0.0155 and 0.1108, respectively, though only the

latter is significantly different from 0 at the 95% level. For the multinomial Logit estimator, the

corresponding coefficient ratio estimates are of larger magnitude, i.e., (0.0330, 0.1573). However,

in contrast to the Probit results, none of them are significantly different from 0 at the 95% level.

Our semiparametric estimator gives very similar estimation and inference results as Probit.

Now we turn attention to the panel data features of the data set. For the static model, we

consider the following specification

y∗ijt = −x(1)ijt + β1x
(2)
ijt + β2x

(3)
ijt + αij − εijt, j ∈ J , t = 1, ..., Ti,

where αij collects the individual and alternative specific effects. Note that here αij can be arbitrarily

33We implement these estimations in Stata and compute the standard errors using Stata’s cluster-robust option.
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correlated with xi. The objective function of our semiparametric estimator is of the form

∑
i

Ti−1∑
s=1

∑
t>s

Khn(x
(1)
i(−1)s − x

(1)
i(−1)t)1[x̃i(−1)s = x̃i(−1)t](yi1s − yi1t) · sgn((xi1s − xi1t)′b). (5.2)

To compute (5.2), we choose the Gaussian kernel function and hn = 3σ̂n−1/6/ 3
√

log n. In addition

to our estimator, we also implement the conditional likelihood estimator proposed in Chamberlain

(1980) for comparison. The conditional likelihood method is consistent for the Logit specification,

but it may not be consistent for general specifications.

As presented in Table 11, the estimation results for our semiparametric method are(β̂1, β̂2) =

(0.0639, 0.0822). These results are interesting when compared to results attained using parametric

and semiparametric estimators for the cross-sectional model. In the panel data model, the coeffi-

cients on x
(2)
ijt and x

(3)
ijt are comparable. This is in complete contrast to cross-sectional models where

the coefficient on x
(2)
ijt is not statistically different from 0 and the coefficient on x

(3)
ijt is significantly

positive. The semiparametric estimates are also strikingly different from the conditional Logit esti-

mates,34 indicating that the Logit model may be misspecified. However, for the panel data model,

we only report point estimates but not confidence intervals. This is because the limiting distribu-

tion of our panel estimator is nonstandard, and thus it is unlikely that the standard bootstrap can

provide valid inference results in this setting.

Table 11: Parametric and Semiparametric Estimates for Static Panel Data Model

β1 β2

Semiparametric 0.0639 0.0822

Conditional Logit 0.0865 0.2271

The last task for this section is to examine the state dependence in the panel data model.

Particularly, we consider the following model modified from the static panel setting: For each i and

t ∈ {2, ..., Ti},

y∗i1t = −x(1)i1t + β1x
(2)
i1t + β2x

(3)
i1t + γyi1t−1 + αi1 − εi1t,

y∗ijt = −x(1)ijt + β1x
(2)
ijt + β2x

(3)
ijt + αij − εijt, j = 2, 3, 4,

i.e., we include yi1(t−1) in the indirect utility of alternative 1 as an additional regressor. To estimate

(β1, β2, γ), we work with the following objective functions, generalizing the semiparametric and con-

ditional Logit estimators proposed in Section 3.2 respectively to models with a longer (unbalanced)

34Similar to the cross-sectional model, all parametric estimates reported in Tables 11 and 12 (see below) are the

ratios of the coefficients on the other regressors to the absolute value of the coefficient on x
(1)
ijt .
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panel. Let v
(1)
it ≡ (x

(1)
i1t , x

(1)′
i(−1)t)

′ and ṽit ≡ (x̃′i1t, x̃
′
i2t, x̃

′
i3t, x̃

′
i4t)
′. They are

∑
i

Ti−2∑
t=2

Khn(x
(1)
i(−1)t − x

(1)
i(−1)t+1, v

(1)
it+1 − v

(1)
it+2)1[x̃i(−1)t = x̃i(−1)t+1, ṽit+1 = ṽit+2]

× (yi1t − yi1t+1) · sgn((xi1t − xi1t+1)
′b+ r(yi1t−1 − yi1t+2))

+
∑
i

Ti−3∑
s=2

Ti−1∑
t=s+2

Khn(x
(1)
i(−1)s − x

(1)
i(−1)t, v

(1)
is+1 − v

(1)
it+1)1[x̃i(−1)s = x̃i(−1)t, ṽis+1 = ṽit+1]

× 1[yi1s+1 = yi1t+1](yi1s − yi1t) · sgn((xi1s − xi1t)′b+ r(yi1s−1 − yi1t−1))

and∑
i

∑
2≤s<t≤Ti−1

Khn(x
(1)
i(−1)s − x

(1)
i(−1)t, v

(1)
is+1 − v

(1)
it+1)1[x̃i(−1)s = x̃i(−1)t, ṽis+1 = ṽit+1]1[yi1s 6= yi1t]

× log

(
exp((xi1s − xi1t)′b+ r(yi1s−1 − yi1t+1) + r(yi1s+1 − yi1t−1)1[t− s > 1])yi1s

1 + exp((xi1s − xi1t)′b+ r(yi1s−1 − yi1t+1) + r(yi1s+1 − yi1t−1)1[t− s > 1])

)
.

To implement these two estimators,35 we consider the Gaussian kernel function and hn = 5σ̂n−3/29.

As reported in Table 12 below, the estimation results are (β̂1, β̂2, γ̂) = (0.1358, 0.2460, 0.2512)

for the semiparametric estimator, and (β̂1, β̂2, γ̂) = (−0.1481, 0.2815, 0.2353) for the conditional

Logit estimator. For the semiparametric estimates, the first two estimated coefficients are very

different when compared to the static model, indicating the dynamic specification may be relevant

for this data set and ignoring the state dependence may lead to misspecification. This point is

consistent with the estimated coefficient on lagged choice being quite different from zero, indicating

“persistence” in consumer behavior for this product. The conditional Logit model is probably

misspecified for this data set as the estimated coefficient on x
(2)
ijt is negative with relatively large

magnitude, not making economic sense.

Table 12: Parametric and Semiparametric Estimates for Dynamic Panel Data Model

β1 β2 γ

Semiparametric 0.1358 0.2460 0.2512

Conditional Logit -0.1481 0.2815 0.2353

6 Conclusions

In this paper, we proposed new estimation procedures for semiparametric multinomial choice mod-

els. For the cross-sectional model, we proposed a local rank-based procedure, which was shown

35For the conditional Logit estimator, the first component of b is a free parameter to be estimated.
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to be root-n consistent and asymptotically normal, even in designs where no smoothing parame-

ters were required. The pairwise differencing is readily extended to time differencing, enabling a

consistent panel data estimator of a model with alternative and individual-specific effects. Further-

more, we attain a new identification result for a dynamic multinomial choice model with lagged

discrete dependent variables and proposed new consistent estimators for the coefficients on both

strict exogenous and lagged dependent variables.

The work here leaves many open areas for future research. For example, as pointed out, in both

panel data settings, the proposed procedure suffers from a curse of dimensionality in the number

of choices. It is thus an open question if our proposed approach results in a rate-optimal estimator.

Rate optimality for dynamic binary choice models was discussed in Seo and Otsu (2018), but such

bounds are lacking in the multinomial case.
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