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Identification in matching games

Jeremy T. Fox
Department of Economics, University of Michigan and NBER

I study a many-to-many, two-sided, transferable utility matching game. Consider
data on matches or relationships between agents but not on the choice set of
each agent. I investigate what economic parameters can be learned from data on
equilibrium matches and agent characteristics. Features of a production function,
which gives the surplus from a match, are nonparametrically identified. In partic-
ular, the ratios of complementarities from multiple pairs of inputs are identified.
Also, the production function is identified up to a positive monotonic transforma-
tion.
Keywords. Matching, identification, complementarities, two-sided matching,
assignment games, vertical relationships.
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1. Introduction

Matching games are a new and important area of empirical interest. Consider the ex-
ample of marriage. A researcher may have data on the marriages in each of several inde-
pendent matching markets, say a set of towns. The researcher observes characteristics of
each man and each woman in each town, as well as the sets of marriages that occurred.
The researcher observes equilibrium outcomes—here marriages—and not choice sets,
so identification in this type of model will not be able to rely trivially on the analysis
of single-agent demand models. What types of parameters can be identified from these
data?

Economists have studied nonparametric or semiparametric identification in auc-
tion games of private information (Elyakime, Laffont, Loisel, and Vuong (1994)) as well
as discrete games of complete information (Berry and Tamer (2006)) and incomplete in-
formation (Bajari, Chernozhukov, Hong, and Nekipelov (2009)). This previous literature
is unified in using noncooperative Nash equilibrium as the solution concept. Matching
games are cooperative games and use pairwise stability instead of Nash equilibrium as
the main solution concept. This is the first paper to study identification in a new and
empirically important class of games.

I follow the classic works of Koopmans and Beckmann (1957), Shapley and Shu-
bik (1972), and Becker (1973), and model the formation of matches (say marriages) as
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the outcome to a competitive market. Agents have preferences over partners and agents
can exchange monetary transfers with their spouse. The equilibrium concept is pairwise
stability: in part, at an outcome to a marriage market, no man would prefer to pay the
transfer required to be able to marry any woman other than his actual wife in the pro-
posed equilibrium. I assume the researcher does not have access to data on the transfers.
For marriage, transfers are a modeling abstraction. For interfirm relationships, transfers
may be private contractual details. Therefore, this paper studies point identification un-
der partial observability of the outcome variables in the model.

Match data come from the outcome to a market, which intermingles the preferences
of all participating agents and finds an equilibrium. An agent may not match with its
most preferred partner because that partner is taken. Because agents on the same side
of the market are rivals to match with potential partners, the failure for a match to form
does not mean that the match gives low production. Given this rivalry for partners, it is
not obvious what types of economic parameters are identified from having equilibrium
outcome data from matching markets. Identification asks the question of just what eco-
nomic parameters can be learned from data on who matches with whom? A production
function gives the total output of a match. I prove that features of match production
functions can be identified in a transferable utility setting using data on only equilib-
rium matches. Identification relies on inequalities implied by the equilibrium concept,
pairwise stability.

I first study what I label derivative-based identification, as the features of produc-
tion functions one can learn about may involve derivatives. Derivative-based identifi-
cation using qualitative match data arises because certain derivatives of match produc-
tion functions govern sorting patterns in transferable utility matching games. For exam-
ple, a cross-partial derivative of the production function represents the importance of
complementarities between a pair of characteristics, each from a different agent. Becker
(1973) showed that complementarities result in assortative matching. I extend the infor-
mal identification result of Becker in several dimensions. For example, I show how to
identify the ratio of complementarities in two pairs of agent-specific characteristics in a
match production function, say the relative importance of wealth and schooling. This al-
lows a researcher to measure the relative importance of complementarities on different
pairs of characteristics. This is equivalent to a multivariate (multiple pairs of character-
istics) analysis, while Becker’s analytical characterization of the sorting pattern requires
that each agent is distinguished by only a single characteristic.

Second, I ask whether a researcher can identify the production function for differ-
ent types of matches up to a positive monotonic transformation. I learn whether match
production is higher at one set of characteristics for the matched parties than at another
set of characteristics. I extend an identification result from the single agent, multinomial
choice literature of Matzkin (1993, Theorem 1). The extension is nontrivial because one
cannot freely vary the choice set of a single agent when using data that are the equilib-
ria to matching games. In matching with transfers, you must pay a potential partner to
match with you, and the required payment involves the characteristics of rival agents.
I prove the identification of match production functions, up to a positive monotonic
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transformation, by varying the exogenous distribution of the types of agents in a match-
ing market.

My identification arguments do not require data on objects that are not found in
many data sets but are important in matching models: the endogenous prices, the num-
ber of physical matches that an agent can make (quotas), or continuous outcomes such
as production levels, revenues, and profits. Quotas are often a modeling abstraction in
many-to-many matching; not requiring data on such an abstraction is an advantage.
Transfers, production levels, revenues, and profits are often not recorded at all (mar-
riage) or not disclosed (interfirm relationships).

The identification arguments are for many-to-many, two-sided matching games.
This means each potential agent may be involved in multiple matches with agents on
the other side of the market. This generality is essential to applications in industrial
organization, where, for example, one supplier of goods may match to many retailers
of those goods. I do not require a supplier’s profit function to be additively separa-
ble across the characteristics of its multiple partners. I also prove separate results for
three different types of observable characteristics that may enter the payoff of a group
of matches: agent-specific characteristics, match-specific characteristics, and charac-
teristics that vary for each group of matches. Importantly, each agent, match, or group
of matches may have a vector of characteristics.

In many-to-many matching games, I study the identification of production func-
tions that can take as arguments the characteristics of many partners at once. In many-
to-many matching, pairwise stability is a weaker solution concept than another solution
concept, full stability. One mathematical achievement of the paper is that all identifica-
tion results use only the restrictions from pairwise stability, which as its name indicates,
allows only a single pair of potential partners to consider deviating from the proposed
equilibrium at once. This achievement is important because the communication vol-
ume necessary to believe an equilibrium is fully stable is large: arbitrarily large groups
of agents would need to coordinate their actions. Theorists are often comfortable spec-
ifying that a decentralized matching game’s outcome is pairwise stable, but assuming
that the outcome is fully stable would be more controversial.

The identification arguments are fully nonparametric: I do not impose that produc-
tion functions and the stochastic structure of the model are known up to a finite vector
of parameters. The stochastic structure of the model uses a rank order property that is
inspired by the maximum score literature on single-agent, multinomial choice (Manski
(1975), Matzkin (1993), Fox (2007)). This maximum score identification approach allows
me to work with inequalities that are derived from pairwise stability, rather than working
with high-dimensional integrals over match-specific unobservables. This allows me to
focus on the matching-market configurations that lead to identification. In single agent,
multinomial choice, a similar rank order property is derived as a consequence of the
payoff of each discrete choice having an independent and identically distributed (i.i.d.)
unobservable component. I discuss in some detail why an i.i.d. unobservable compo-
nent to each match’s payoff does not give the necessary rank order property in matching,
but such an i.i.d. shock at the assignment level does. I also provide simulation evidence
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about how much the rank order property is violated in models with i.i.d. unobservable
match-specific components.

Another advantage of the rank order property is that the identification arguments
lead to a computationally simple estimator. Matching markets can have hundreds or
thousands of agents in them. In Fox (2010), I presented such a maximum score estima-
tor for matching games and showed how it resolves two curses of dimensionality in the
number of agents in a matching market: a computational curse of dimensionality from
otherwise needing to compute or check equilibria and a data curse of dimensionality
that might arise from the need to nonparametrically estimate matching probabilities as
a function of all agent characteristics in a matching market. Simultaneously with this
paper on identification, I have undertaken two empirical applications of the estimator.
In Fox and Bajari (2010), we studied matching between bidders and licenses for sale in
an FCC spectrum auction. In Fox (2010), I studied matching between automotive parts
suppliers and automotive assemblers. In both cases, the data sets are fairly large and
complementarities between multiple matches for the same agent are essential aspects
of the empirical investigation. Also, the various types of characteristics (agent, match,
and group of matches) are all used in the empirical work. So the generality this pa-
per strives for is used in my empirical applications. More recently, Akkus and Hortacsu
(2007), Baccara, Imrohoroglu, Wilson, and Yariv (2009), Levine (2009), Mindruta (2009),
and Yang, Shi, and Goldfarb (2009) conducted empirical work using the matching max-
imum score estimator in Fox (2010). The identification results here are directly relevant
for the above empirical papers.

No paper has performed a fully nonparametric analysis of any sort of matching
game. Choo and Siow (2006) provided a logit-based estimator for one-to-one matching
games using infinite numbers of agents and a finite number of observed agent charac-
teristics.1 They identified production functions conditional on the parametric structure
of the logit model for the error terms. In Fox and Bajari (2010), we presented a rank or-
der property for many-to-one matching games using infinite numbers of agents and a
continuum of observed agent characteristics. We argued that the rank order property
in Fox and Bajari (2010) is implied by the logit assumptions in Choo and Siow. Once
the rank order property is established, the fully nonparametric identification results in
this paper extend almost trivially to the case with an infinite number of agents. There-
fore, the assumption of logit errors in Choo and Siow is sufficient but not necessary to
identify features of production functions in markets with an infinite number of agents.
A literature has explored parametric estimation in nonnested Gale and Shapley (1962)
matching games, that is, games without endogenous transfers (Boyd, Lankford, Loeb,
and Wyckoff (2003), Gordon and Knight (2009), Sørensen (2007)). These papers do not
study identification.

The results in this paper are relevant for empirical work. One goal of matching em-
pirical work is to distinguish the role of the distribution of exogenous agent character-
istics from the role of the production function in the sorting pattern we see in the data.
For example, Choo and Siow (2006) found changes in the sorting patterns between broad

1Dagsvik (2000) also used the logit model.
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types of men and women across decades in the United States, and in part ask whether
changes in match production functions or changes in agent characteristics are behind
the differences in sorting patterns. Identification of production functions, or features of
them, is thus important to answer these questions.

The identification results in this paper are specifically referenced in Fox and Bajari
(2010). In that paper, we estimated the production function for companies matching to
geographic mobile phone licenses in an FCC spectrum auction using qualitative data
on which bidders win what packages of licenses. We use our estimates to measure the
efficiency of the assignment in the auction. The current paper does not prove that the
production function is identified up to an affine transformation. Such a theorem would
be sufficient to identify the relative efficiency of multiple assignments nonparametri-
cally. In Fox and Bajari, we first used the derivative-based identification arguments to
cardinally measure the relative complementarities from higher-value bidders sorting to
packages with greater scale and from packages of geographically nearby licenses being
grouped together. Second, we use the results on the identification of production func-
tions up to a positive monotonic transformation to argue that both of these types of bid-
der and license characteristics are “goods” that raise output. Given a parametric func-
tional form that, informally, is specified up to the features of the production function
that I prove are nonparametrically identified, this lets us use our production function
to measure (up to scale) the total output from counterfactual assignments of bidders to
licenses and to measure how much efficiency is lost from the actual assignment in the
auction.

I first present the intuition for the identification strategies and results for the simple
example of marriage in Section 2. Once the intuition for the results has been presented,
Section 3 introduces notation for many-to-many, two-sided matching games. Section 4
presents sufficient conditions for the maximum score-like rank order property. The last
two sections present the main identification theorems. Section 5 discusses derivative-
based identification and Section 6 discusses the identification of production levels up
to positive monotonic transformations. The proofs of the theorems are provided in the
Appendix.

2. One-to-one, two-sided matching games

This section presents informal results for the case of one-to-one, two-sided matching.
One-to-one matching was studied in Koopmans and Beckmann (1957), Shapley and
Shubik (1972), and Becker (1973), and has been summarized in Roth and Sotomayor
(1990, Chap. 8). The results in this section focus on intuition; there will be no formal
proofs. The formal details will be shown for the many-to-many matching case in Sec-
tions 5 and 6.

2.1 Utility functions, production functions, and transfers

This section studies a market with two men, m1 and m2, and two women, w1 and w2.
Each agent has two observable characteristics: schooling and wealth. To simplify nota-
tion in this section, let agents be identified by their characteristics. So in a duplication



208 Jeremy T. Fox Quantitative Economics 1 (2010)

of notation,m1 = (m1
1�m

2
1), where the vector of manm1’s characteristics is equal to man

m1’s schooling m1
1 and wealth m2

1. Superscripts refer to individual, scalar characteristics
and subscripts refer to different agents. For woman w1, w1 = (w1

1�w
2
1). The restriction

to two men and two women (or equal numbers of men and women) is for expositional
convenience; the restriction will not be present in the general results on many-to-many
matching games.

Each person can be married only once and to a person of the opposite sex. Let the
utility of a man m for a woman w before transfers be vmen(m�w), which is a function
of the characteristics of m and w, rather than their indices directly. Likewise, let the
utility of woman w for man m before transfers be vwomen(m�w). After a scalar equilib-
rium transfer t〈m�w〉 for match 〈m�w〉 is made, the utilities of the man and woman are
vmen(m�w) + t〈m�w〉 and vwomen(m�w) − t〈m�w〉, respectively. Transfers can be negative,
so the convention that women pay men is an innocuous normalization. Being single is
allowed. If man m is unmatched, write his utility as vmen(m�0)+ 0, where we say he is
matched to a dummy agent 0. Women can also be single.

A key object of interest in this paper is the production from a match,

f (m�w)= f ((m1�m2)� (w1�w2))= vmen(m�w)+ vwomen(m�w)�

which is a function of the schooling of the man and the woman and the wealth of both.
This paper seeks to identify features of the production function f (m�w), and not the
utility functions vmen(m�w) and vwomen(m�w) separately. This is because, absent using
the individual rationality decision to remain single, the production function f (m�w)will
govern the sorting patterns in the transferable utility matching games studied here. One
can only identify features of the production function f (m�w), in part because produc-
tion is not directly observed in the data; only matches are.

Becker (1973) showed that if each man and each woman has only one characteristic,
say schooling but not wealth, then, in a pairwise stable equilibrium, men and women
will assortatively match if the schooling of men and the schooling of women are com-
plements in production:

∂2f ((m1)� (w1))

∂m1 ∂w1 > 0 ∀m1 ∈ R�w1 ∈ R�

Assortative matching means highly schooled men match with highly schooled women.
Likewise, antiassortative matching occurs if schooling levels of men and women are
substitutes in production. My setup is already more general: each agent has a vector
of characteristics m = (m1�m2). Becker’s result does not apply to this case. No previ-
ous matching theory paper provides an analytical characterization of the equilibrium
sorting pattern using simple production function properties such as complementari-
ties when agents have vectors of characteristics and the exogenous distribution of agent
characteristics is unrestricted.

2.2 Data on multiple matching markets

The econometrician has access to data on (A�X) with X = (m1�m2�w1�w2) for each
member of a population of matching markets. Think of each market as a very small
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town with two men and two women; the researcher observes their characteristics X .
Likewise, the researcher observes the assignmentA, the set of matches, in each market.
For example, if m1 and w1 as well as m2 and w2 marry, A = {〈m1�w1〉� 〈m2�w2〉}, where
〈m1�w1〉 is the match between man m1 and woman w1. If m2 and w2 are instead single,
A= {〈m1�w1〉� 〈m2�0〉� 〈0�w2〉}.

Readers may be familiar with single-agent, discrete choice models, such as the para-
metric logit model or the semiparametric maximum score model. It might be helpful to
think of matching by analogy to single-agent choice: the independent variables are the
agent characteristics X = (m1�m2�w1�w2) and the qualitative dependent variable is the
assignmentA. Of course, the underlying data generating process forA is an equilibrium
model and not a single-agent choice model.

Assume that all characteristics in X vary across markets and are continuous ran-
dom variables with (if needed) full support. Let the support be a product space across
all eight characteristics (recall each of the four agents has two characteristics), so that
there is some matching market with each combination of the eight characteristics. The
researcher has access to the population data on i.i.d. market observations (A�X) and
hence can identify the joint distribution of A and X . Let Pr(A | X) be the probability
of observing assignment A given agent characteristics X . Pr(A |X) is known given the
joint distribution ofA andX , as isG(X), the marginal distribution ofX .

For the case of one-to-one matching (this property will not always generalize
to many-to-many matching), Koopmans and Beckmann (1957), Shapley and Shubik
(1972), and Becker (1973) proved that any equilibrium assignment A will maximize the
sum of production of all matches in the economy, orAwill maximize

∑
〈m�w〉∈A f(m�w),

where 〈m�w〉 is an arbitrary match in the feasible assignmentA. An assignment is feasi-
ble for marriage if each agent has at most one spouse and the spouse is of the opposite
gender. The equilibrium concept is pairwise stability, which is formally defined in Sec-
tion 3.2.

Let S index the stochastic structure of the model. If the matching market has error
terms ψ, S will be the distribution of the error terms. Assumptions on how error terms
enter the model will be informally discussed in Section 2.3 and formally discussed in
Section 4. Given a production function f , stochastic structure S, and the assumption
of independence between X and ψ, the model induces a probability distribution over
assignmentsA given observed agent characteristicsX :

Pr(A |X; f�S)=
∫
ψ

1[A is the chosen assignment |X�ψ; f ]dS(ψ)� (1)

This formulation requires that the assignment chosen (or the equilibrium assignment)
is unique with probability 1, which holds in the one-to-one matching model if agent
characteristics or error terms have continuous and product supports. If f 0 is the true
production function and S0 is the true stochastic structure, then the observed data are
generated as Pr(A |X)= Pr(A |X; f 0� S0).
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2.3 The rank order property

Identification will be based on what I call the rank order property. The rank order prop-
erty defines the econometric model being studied. The property is inspired by related
conditions in the literature on maximum score estimation of the single-agent, multino-
mial choice model (Manski (1975), Matzkin (1993), Fox (2007)). Let A1 and A2 be two
different feasible assignments for the same matching market.

Property 2.1. Given f and S, a strong version of the rank order property states that
Pr(A1 |X; f�S) > Pr(A2 |X; f�S) if and only if

∑
〈m�w〉∈A1

f (m�w) >
∑

〈m�w〉∈A2
f (m�w).

For example, focus on the two assignments where no agent is single. Let A1 =
{〈m1�w1〉� 〈m2�w2〉} and A2 = {〈m1�w2〉� 〈m2�w1〉}. Given the observable agent charac-
teristics inX and the true f 0, the rank order property states that assignmentA1 is more
frequently observed if and only if

f (m1�w1)+ f (m2�w2) > f(m1�w2)+ f (m2�w1)� (2)

For marriage, the rank order property is a stochastic extension of the deterministic idea
from the theory literature that the equilibrium assignment maximizes production and
assignments that do not maximize production do not occur. Under the rank order prop-
erty, all assignments can occur, and their frequencies are rank ordered by their sums of
deterministic production.

The rank order property holds exactly if the total production to an assignment A is∑
〈m�w〉∈A f(m�w) + ψA, where ψA is independently and identically distributed across

assignments A (or is exchangeable across A). The error ψA occurs in the social plan-
ner’s problem and can be thought of as a market equilibrating error (a friction). One
might decompose ψA = ∑

〈m�w〉∈A ε〈m�w〉�A, where ε〈m�w〉�A is specific to match 〈m�w〉
and assignment A, but these errors enter the social planning problem only and should
not be seen as unobserved heterogeneity in the payoff to each match.

The rank order property holds approximately in simulations if the payoff to a match
is f (m�w) + ε〈m�w〉, where ε〈m�w〉 is independently and identically distributed across
matches 〈m�w〉 and reflects unobserved heterogeneity in the payoff to a match observed
by the agents in the matching game. This type of i.i.d. error is typically invoked on the
literature on estimating static Nash games. Section 4 presents the relevant simulation
evidence.

The rank order property is unlikely to hold if the production to a match is f ((m1�m2�

ηman)� (w1�w2�ηwoman)), where ηman is a scalar unobserved characteristic of a man and
ηwoman is a scalar unobserved characteristic of a woman, and both unobservables are
i.i.d. None of the previous papers on parametric estimation in any sort of matching
game allows these sorts of unobserved agent characteristics that enter the production of
every match involving agentsm orw (Boyd et al. (2003), Choo and Siow (2006), Sørensen
(2007)). As the first paper on identification in any sort of matching game, I stick to the
simple rank order property and do not explore identification in the presence of unob-
served characteristics ηman and ηwoman. Such an extension is a subject of my ongoing
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research, which is important because empirical papers that do not formally estimate an
equilibrium matching model, such as Ackerberg and Botticini (2002), have found that
such characteristics may be important.

The rank order property is convenient because it allows identification and estima-
tion to proceed without solving integrals. Simulation arguments directly involve the in-
tegral in (1), so could involve numerically integrating out error terms equal to the num-
ber of men times the number of women if the payoff to a match is f (m�w) + ε〈m�w〉.
This could involve hundreds of agents and thousands of error terms in a realistic data
set. The identification arguments in this paper lead to the computationally simple max-
imum score estimator in Fox (2010).

2.4 Identification of features and within classes of production functions

As I wrote above, qualitative data on who matches with whom in equilibrium will not be
enough to identify production functions in full generality. At a minimum, multiplying
each f by a positive constant will preserve the inequality in (2).

There are two ways I proceed over the two classes of identification results that I will
present: identifying features c(f ) of the production function f and sufficiently restrict-
ing the class of production functions F so that f 0 is point identified within it. I use an
extension of a standard definition for point identification by Gourieroux and Monfort
(1995, Section 3.4). The probability of a set of market characteristics Y is

∫
Y dG(X).

Definition 2.1. Let F be a class of production functions and let S be a class of sto-
chastic structures. Let f 0 ∈ F be the production function and let S0 ∈ S be the stochastic
structure in the data generating process.

(i) f 0 is identified within the class of production functions F if there do not exist
f 1 �= f 0� f 1 ∈ F , stochastic structure S1 ∈ S� and some possibly empty set Y of market
characteristics of probability 0 such that Pr(A |X; f 1� S1)= Pr(A |X; f 0� S0) for all fea-
sible (A�X) withX /∈ Y .

(ii) Let c(·) be a known function of f that produces either a scalar, vector, another
function of the arguments of f , or a vector of functions of the arguments of f . A feature
of f 0 c(f 0) is identified for the class of production functions F if there do not exist f 1 ∈
F where c(f 1) �= c(f 0), stochastic structure S1 ∈ S� and some possibly empty set Y of
market characteristics of probability 0 such that Pr(A |X; f 1� S1)= Pr(A |X; f 0� S0) for
all feasible (A�X) withX /∈ Y .

Identification of a feature implies identification within a suitably restricted class of
production functions. If the feature c(f 0) is identified for the class of production func-
tions F , then we can define a new class F c where for no two f 1� f 2 ∈ Fc it is the case that
c(f 1) = c(f 2) and for every f ∈ F there exists an f 1 ∈ Fc such that c(f 1) = c(f ). Then
we can argue that the unique f 3 ∈ F 1 such that c(f 3) = c(f 0) is identified within the
class of production functions F c whenever the feature c(f 0) is identified for the class of
production functions F .
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Identification of f 0 within the class of production functions F is the key step to prov-
ing that the probability limit of a maximum score objective function has a unique global
optimum at the true production function f 0, when optimized over f ∈ F .2 Thus identifi-
cation in the sense of either part (by the previous paragraph’s argument) of Definition 2.1
leads immediately to a constructive identification result, where f 0 is constructed as the
unique solution to a maximum score optimization problem. Fox (2010) discussed the
maximum score estimation of production functions in matching games in more detail.

Let me now provide a template for how we can combine the definition of identifi-
cation and the rank order property to show identification of a feature c(f 0) of f 0, the
true production function. Therefore, let f 1 be some other production function such
that c(f 1) �= c(f 0). Identification will require us to find a set of market characteristics
X where (2) holds for f = f 0 and

f (m1�w1)+ f (m2�w2)≤ f (m1�w2)+ f (m2�w1) (3)

holds for f = f 1. Let A1 = {〈m1�w1〉� 〈m2�w2〉} and A2 = {〈m1�w2〉� 〈m2�w1〉}. The in-
equality (2) for f = f 0 implies that Pr(A1 |X)> Pr(A2 |X) in the population data, while
(3) for f = f 1 implies Pr(A1 |X)≤ Pr(A2 |X) if f 1 happened to generate the data, which
it does not. Pr(A1 | X) > Pr(A2 | X) and Pr(A1 | X) ≤ Pr(A2 | X) are exclusive possi-
bilities. If the production function is continuous, an open set of market characteristics
around this particular X will be decisive because f 0 and f 1 give different implications
for the population data Pr(A |X) for allX in the open set.

2.5 Derivative-based identification

I will use the notion of a feature c(f ) to identify the signs of cross-partial derivatives and
the ratios of cross-partial derivatives.

2.5.1. Are two inputs complements or substitutes at a point?

The first feature of f 0 that will be identifiable is the sign of ∂
2f 0(m�w)

∂m1 ∂w1 , or whether the
schooling levels of men and women are complements or substitutes in production. Here
m and w are vectors of male and female characteristics. This extends the informal iden-
tification result of Becker (1973) in two ways: each m is a vector of two characteristics,

schooling and wealth (not just schooling), and the signs of ∂
2f 0(m�w)

∂m1 ∂w1 can be positive for

some couple characteristics (m�w) and negative for other (m�w). The sign of ∂
2f 0(m�w)

∂m1 ∂w1

will be learned for each (m�w) separately and so the signs will be known for all points in
the support of f .

Let ∂
2f 0(m�w)

∂m1 ∂w1 > 0 and so, to show identification, let f 1 be some other production func-

tion where ∂2f 1(m�w)

∂m1 ∂w1 < 0. We will need to find some characteristicsX = (m1�m2�w1�w2),
which comprises eight characteristics because each element is a vector, where (2) holds
for f = f 0 and (3) holds for f = f 1.

2The rank order property ensures that f 0 is one global optimum of the probability limit of the maximum
score objective function. Identification of f 0 within the class of production functions F immediately shows
that the global optimum is unique.
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In what follows, assume each f is three-times differentiable, so that cross-partial
derivatives are symmetric. Then a cross-partial derivative can be expressed as the limit
of a middle-difference quotient,

∂2f (m�w)

∂m1 ∂w1 = lim
h→0

((
f ((m1 + h�m2)� (w1 + h�w2))− f ((m1 + h�m2)� (w1�w2))

(4)
− f ((m1�m2)� (w1 + h�w2))+ f ((m1�m2)� (w1�w2))

)
/h2)�

where h is the limit argument. The value of (m�w) where we wish to identify the

sign of ∂2f 0(m�w)

∂m1 ∂w1 is given. We will work with markets with observables X of the form

X = ((m1�m2)� (m1 +h�m2)� (w1�w2)� (w1 +h�w2)). Men (m1�m2) and (m1 +h�m2) have
identical observable characteristics except that (m1 +h�m2) has hmore units of school-
ing than (m1�m2). Likewise, women (w1�w2) and (w1 + h�w2) are identical except that
(w1 + h�w2) has hmore units of schooling.

The numerator of the middle-difference quotient in (4) for f = f 0 will be positive

for sufficiently small h, because ∂2f 0(m�w)

∂m1 ∂w1 > 0. Likewise for sufficiently small h > 0, the

numerator of the middle-difference quotient in (4) for f = f 1 will be negative. Let h be
sufficiently small so that both the previous statements hold. For f = f 0, we can rearrange
the positive numerator to give

f ((m1 + h�m2)� (w1 + h�w2))+ f ((m1�m2)� (w1�w2))

> f((m1 + h�m2)� (w1�w2))+ f ((m1�m2)� (w1 + h�w2))�

Likewise, the opposite inequality will hold for f = f 1. Now let there be two hypothetical
assignments, A1 = {〈(m1 + h�m2)� (w1 + h�w2)〉� 〈(m1�m2)� (w1�w2)〉} and A2 = {〈(m1 +
h�m2)� (w1�w2)〉� 〈(m1�m2)� (w1 +h�w2)〉}. By the rank order property, f 0 implies Pr(A1 |
X) > Pr(A2 |X) and f 1 implies the reverse. We thus have identification of f 0 and hence

we learn the sign of ∂
2f 0(m�w)

∂m1 ∂w1 . We can use data on the equilibrium outcomes to matching
markets to learn whether two inputs are complements or substitutes in production.

What is the economic intuition? Given the true f 0 and the alternative f 1, we were
able to find a set of matching market observablesX where f 0 and f 1 gave different pre-
dictions about the relative frequencies of two assignments. Here, f 0 predicted that, in
markets with this X , agents would assortatively match on schooling (A1) in more mar-
kets than they would antiassortatively match (A2), while f 1 predicted antiassortative
matching would occur in more markets. We can look at the population data on Pr(A |X)
to see which is more common. The continuity of f will extend identification to an open
set of market characteristics with positive probability.

Note that the identification result does not allow a researcher to tell whether a pair
of inputs is “more” complementary at (m1�w1) than some other point (m2�w2). For ex-

ample, ∂
2f 1(m1�w1)

∂m1 ∂w1 = 5 and ∂2f 1(m2�w2)

∂m1 ∂w1 = 7 cannot be distinguished from any other pair of
positive values.
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2.5.2. How important are complementarities for one pair of inputs compared to another
pair?

A natural question to ask is how much more important are complementarities be-
tween schooling levels of men and women compared to complementarities between
wealth levels of men and women? The multivariate model has multiple characteristics
and we wish to identify the relative importance of the different pairs of characteristics
in match production.

Say both schooling and wealth are complements: ∂
2f 0(m�w)

∂m1 ∂w1 > 0 and ∂2f 0(m�w)

∂m2 ∂w2 > 0. We
will identify the ratio of the complementarities of schooling to the complementarities of
wealth,

∂2f 0(m�w)

∂m1 ∂w1

/∂2f 0(m�w)

∂m2 ∂w2 �

As before, the analysis is local: for a given value of the vectors of male and female char-
acteristics (m�w), we can establish these ratios globally by varying (m�w). Also note that
we are identifying the ratio of complementarities, which is an actual numerical value.

This will be harder than identifying whether ∂2f 0(m�w)

∂m1 ∂w1 > ∂2f 0(m�w)

∂m2 ∂w2 , which is a qualitative

comparison instead of a quantitative value.3

Let f 1 �= f 0 be some other production function. Because we can use the previous
arguments to identify whether any pairs of inputs are complements or substitutes, we

can restrict attention to the case where ∂2f 0(m�w)

∂m1 ∂w1 > 0 and ∂2f 0(m�w)

∂m2 ∂w2 > 0 but, without loss
of generality,

∂2f 0(m�w)

∂m1 ∂w1

/∂2f 0(m�w)

∂m2 ∂w2 >
∂2f 1(m�w)

∂m1 ∂w1

/∂2f 1(m�w)

∂m2 ∂w2 �

We will need to embellish the running example and allow each matching market to have
three men and three women. Let all men start at the baseline characteristics (m1�m2).
One man (m1 + h1�m

2) has h1 extra units of schooling and another man (m1�m2 + h2)

has h2 extra units of wealth. Likewise, there are three women, (w1�w2), (w1 + h1�w
2),

and (w1�w2 + h2). Now X = ((m1�m2)� (m1 + h1�m
2)� (m1�m2 + h2)� (w

1�w2)� (w1 + h1�

w2)� (w1�w2 + h2)).
The formal argument using the limits of middle-difference quotients is somewhat

technical and will appear in the proof of Theorem 5.3 for the many-to-many matching
case. For now, this omitted argument will give particular values of h1 and h2, the extra
schooling and the extra wealth, where key inequalities hold. In particular, under f = f 0

and these choices of h1 and h2,

f ((m1 + h1�m
2)� (w1 + h1�w

2))+ f ((m1�m2 + h2)� (w
1�w2))

+ f ((m1�m2)� (w1�w2 + h2))

3The identification of ∂2f 0(m�w)

∂m1 ∂w1 /
∂2f 0(m�w)

∂m2 ∂w2 may seem parallel to the identification of marginal rates of

substitution in single-agent choice. The ratio of marginal utilities is preserved under positive monotonic
transformations. However, the ratio of cross-partial derivatives is not preserved under positive monotonic
transformations.
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> f((m1�m2 + h2)� (w
1�w2 + h2))+ f ((m1 + h1�m

2)� (w1�w2))

+ f ((m1�m2)� (w1 + h1�w
2))�

The reverse inequality will hold under f = f 1. On the left side, there is the total produc-
tion from an assignmentA1 = {〈(m1 + h1�m

2)� (w1 + h1�w
2)〉� 〈(m1�m2 + h2)� (w

1�w2)〉�
〈(m1�m2)� (w1�w2 + h2)〉}, where the man and woman with h1 extra units of schooling
marry. Also, the man and woman with h2 extra units of wealth each marry baseline indi-
viduals. On the right side, there is the total production from an assignment

A2 = {〈(m1�m2 + h2)� (w
1�w2 + h2)〉� 〈(m1 + h1�m

2)� (w1�w2)〉�
〈(m1�m2)� (w1 + h1�w

2)〉}�
where the couple who both have h2 of extra wealth marry, and the man and the woman
with h1 of extra schooling each marry a baseline person.

We have found a set of observable characteristics X and two corresponding assign-
ments A1 and A2, where f 0 and f 1 give different implications for the comparison of
total, deterministic production. So f 0 implies Pr(A1 | X) > Pr(A2 | X) and f 1 implies
the reverse. The economic intuition is easy to understand. Assignment A1 has assorta-
tive matching on schooling but antiassortative matching on wealth, andA2 has assorta-
tive matching on wealth but antiassortative matching on schooling. If, at these choices
for X , assortative matching on schooling and antiassortative matching on wealth oc-
cur in more markets than assortative matching on wealth and antiassortative matching

on schooling, then the true ratio of complementarities is ∂2f 0(m�w)

∂m1 ∂w1 /
∂2f 0(m�w)

∂m2 ∂w2 instead of
∂2f 1(m�w)

∂m1 ∂w1 /
∂2f 1(m�w)

∂m2 ∂w2 . The value of ∂
2f 0(m�w)

∂m1 ∂w1 /
∂2f 0(m�w)

∂m2 ∂w2 is identified because f 1 was arbitrary.

2.6 Identification of production functions up to positive monotonic transformations

The derivative-based identification analysis is sufficient for many matching empirical
applications. However, it is impossible to use the derivative-based analysis to tell apart
two production functions with the same cross-partial derivatives. Briefly let schooling be
only the agent characteristic. The production functions f 1(m1�w1) = −(m1 − w1)2 and

f 2(m1�w1)= 2m1 ·w1 both have ∂2f (m1�w1)

∂m1 ∂w1 = 2. For f 1, f 1(1�1)= 0 and f 1(2�1)= −1. For

f 2, f 2(1�1) = 2 and f 2(2�1) = 4. So f 1(1�1) > f 1(2�1) yet f 2(1�1) < f 2(2�1). Under f 1,
each man’s marriage’s production is highest when the man matches with a woman who
has the same level of schooling. Schooling is a horizontal attribute. Under f 2, any man’s
marriage’s production will be maximized by matching with the most educated woman.
Schooling is a vertical attribute.

Now return to there being two characteristics, wealth and schooling, for each man
and each woman. Identifying cross-partial derivatives does not tell us whether pro-
duction is higher at one argument (m�w) than another argument. For any two sets of
characteristics for a pair of matches 〈m1�w1〉 and 〈m2�w2〉, we need to identify whether
f 0(m1�w1) > f

0(m2�w2) or the reverse. Ordering production function levels is helpful in
distinguishing whether an individual match characteristic such as schooling is actually
a vertical attribute that raises output.
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Matzkin (1993, Theorem 1) proved the identification of utility functions for the
single-agent, multinomial choice model. Matzkin showed that production functions are
identified within a class U of functions where no two utility functions are related by a
positive monotonic transformation. Formally, Matzkin found identification of the util-
ity function in part by sufficiently restricting the class of utility functions to rule out
positive monotonic transformations. Following Matzkin, restrict attention to a class of
production functions F where no two members are related by a positive monotonic
transformation. Let f 0 ∈ F be the true production function and let f 1 ∈ F be some alter-
native not related to f 0 by a positive monotonic transformation. Matzkin proved there
exists two points (m1�w1) and (m2�w2) where, without loss of generality, f 0(m1�w1) >

f 0(m2�w2) and f 1(m1�w1) < f
1(m2�w2). For the single-agent model, identification is

then proved using a rank order property: a consumer with utility function f 0 picks the
product with characteristics (m1�w1) more frequently than the product with character-
istics (m2�w2). A consumer with utility function f 1 does the reverse. Data on the fre-
quency of choice will show f 1 is not the correct utility function.

In the single-agent model, one can vary the characteristics of the choices facing the
single agent. In a matching market, an agent must pay the appropriate transfer to match
with a partner, and that transfer is both an outcome of the game and assumed to not
be in the data. Therefore, I extend the mathematical arguments in Matzkin to show the
identification of the production function f by using only exogenous information on X ,
the collection of characteristics of all agents and potential matches in a matching mar-
ket. In other words, I work with the equilibrium structure of the game and the variation
in the exogenous market-level characteristics of matches to show identification.

We need to transform the inequality f 0(m1�w1) > f
0(m2�w2) into an inequality that

compares assignments A1 and A2 for the same market with observable characteristics
X . The problem is that agents with different characteristics appear on the left and right
sides of f 0(m1�w1) > f

0(m2�w2). Focusing on single people will resolve this dilemma.
Adding the payoff for each agent being single to each side of the inequality gives

f 0(m1�w1)+ f 0(m1�0)+ f 0(m2�0)+ f 0(0�w1)+ f 0(0�w2)
(5)

> f 0(m2�w2)+ f 0(m1�0)+ f 0(m2�0)+ f 0(0�w1)+ f 0(0�w2)�

This inequality almost involves two assignments to the same market,X . An issue is that
a man with characteristics m1 appears on the left side twice, as does a woman w1. Sim-
ilarly, man m2 and woman w2 appear twice on the right side. One commonly used as-
sumption in the theory literature, for example, Koopmans and Beckmann (1957) and
Shapley and Shubik (1972), is that the payoff to being single is 0. If this is the case, we
can choose to set the production of certain unmarried agents in (5) to 0, giving

f 0(m1�w1)+ f 0(m2�0)+ f 0(0�w2) > f
0(m2�w2)+ f 0(m1�0)+ f 0(0�w1)�

We could set all single matches to 0, but doing so would return us to f 0(m1�w1) >

f 0(m2�w2). On the left side, we have an assignment A1 = {〈m1�w1〉� 〈m2�0〉� 〈0�w2〉}
and on the right side we have an assignment A2 = {〈m2�w2〉� 〈m1�0〉� 〈0�w1〉}. The pro-
duction function f 0 implies Pr(A1 | X) > Pr(A2 | X) and f 1 implies the reverse, for
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X = (m1�m2�w1�w2). By the continuity of f , there will be a set of X with positive prob-
ability where the assignment probabilities for A1 and A2 are differently ordered by the
true f 0 and the alternative f 1. Thus, f 0 is identified in the class F , where F contains no
two production functions that are related by a positive monotonic transformation.

The economic intuition here is simple. If we wish to know whether or not f 0(m1�

w1) > f
0(m2�w2), we merely need to see the relative frequency ofm1 and w1 being mar-

ried andm2 andw2 being single (A1) compared tom2 and w2 being married andm1 and
w1 being single (A2). The couple with the higher marital production will be single less
often.

Observations on single people are often found in marriage data. The need to use sin-
gle people arises because the example used agent-specific characteristics. Identification
of production functions up to a positive monotonic transformation will be proved below
for match-specific and group-of-matches-specific characteristics. Those results will not
rely on single people.

The results on identification of cross-partial derivatives and the results on identi-
fication of production functions up to a positive monotonic transformation are com-
plements. Both sets of results show different features of production functions that are
identified. Neither identification result nests the other.

It is instructive to compare both results to the identification of utility functions up to
a positive monotonic transformation in the single-agent model (Matzkin (1993, The-
orem 1)). Taking a positive monotonic transformation of a production function may
change the assignment that is observed, while such a transformation does not change
outcomes in the single-agent model. Thus, the results about identification up to a pos-
itive monotonic transformation are less sharp than for the single-agent model. On the
other hand, in single-agent choice, one cannot usually identify cardinal features of util-
ity functions such as the ratio of the complementarities on one pair of inputs to the
complementarities for another pair. Identification of cardinal features arises from the
transferable utility structure of the matching games studied here.

3. Many-to-many matching games

The rest of the paper studies the general case of many-to-many matching games with-
out additive separability in an upstream firm’s payoffs across multiple downstream firm
partners. These interactions in payoffs across partners are the key behind many em-
pirical issues, as my empirical work elsewhere has illustrated (Fox and Bajari (2010),
Fox (2010)). This section outlines a two-sided, many-to-many matching game where all
match characteristics are observable to other firms. In the next section, I reintroduce
the rank order property and discuss sufficient conditions on error terms. The running
example will be downstream firms matching with upstream firms.

Some theoretical results on one-to-one, two-sided matching with transferable util-
ity have been generalized by Kelso and Crawford (1982) for one-to-many matching,
Leonard (1983) and Demange, Gale, and Sotomayor (1986) for multiple-unit auctions, as
well as Sotomayor (1992, 1999), Camiña (2006), and Jaume, Massó, and Neme (2009) for
many-to-many matching with additive separability in payoffs across multiple matches.
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These models are applications of general equilibrium theory to games with typically fi-
nite numbers of agents. The identification strategy used in this paper can be extended to
the cases studied by Kovalenkov and Wooders (2003) for one-sided matching, Ostrovsky
(2008) for supply chain, multisided matching, and Garicano and Rossi-Hansberg (2006)
for the one-sided matching of workers into coalitions known as firms with hierarchical
production. This paper uses the term “matching game” to encompass a broad class of
transferable utility models, including some games where the original theoretical analy-
ses used different names.

3.1 Many-to-many matching markets

Notationally, I drop the equivalence between agent indices and their characteristics be-
cause I will allow for all firm-, match-, and group-specific characteristics.

Several exogenous objects define a matching market. Let U be a finite set of up-
stream firms indexed by u. Let D be a finite set of downstream firms indexed by d. Let
Q :U ∪D→ N+ be the set of quotas, where qdown

d ∈ Q is the quota of the downstream
firm d and qup

u ∈ Q is the quota of the upstream firm u. A quota represents the maxi-
mum number of physical matches that a firm can have. Let X be the collection of all
payoff-relevant exogenous characteristics. I will be specific about the elements ofX be-
low. A matching market also has the exogenous preferences of agents, which I will also
discuss below.

Let 〈u�d〉 be a match between downstream firm u and upstream firm d. As before,
〈0� d〉 refers to an unfilled quota slot for a downstream firm and 〈u�0〉 refers to an unfilled
quota slot for an upstream firm. The space of individual matches is (U ∪ {0})× (D∪ {0}).
A matching-market outcome is a tuple (A�T). An assignment A, or a finite collection
of matches for all agents in the market, is an element of the power set of (U ∪ {0}) ×
(D ∪ {0}). For any assignment A with N matches, A = {〈u1� d1〉� 〈u2� d2〉� � � � � 〈uN�dN〉},
T = {t〈u1�d1〉� t〈u2�d2〉� � � � � t〈uN�dN 〉} is a set of transfers for all matches in A. Each t〈u�d〉 ∈ R

and represents a payment by a downstream firm to an upstream firm. I use the conven-
tion that the downstream firm is sending positive transfers to the upstream firm; the
notation allows transfers to be negative. In a market with 100 upstream–downstream re-
lationships,A is a set of 100 relationships and T is a set of 100 transfers between each of
the matched partners. The combination of the exogenous (D�U�Q�X) and endogenous
(A�T) elements of a matching market is the tuple (D�U�Q�X�A�T).

Given an outcome (A�T), the payoff of u ∈U is

vup(
x(u�Du(A))) +
∑

d∈Du(A)
t〈u�d〉� (6)

Here, the function Du(A) gives the collection of downstream firms u is matched to in
assignmentA,

Du(A)=
{ {d ∈D | 〈u�d〉 ∈A}� if {d ∈D | 〈u�d〉 ∈A} �= ∅,

{0}� if {d ∈D | 〈u�d〉 ∈A} = ∅,

vup(·) is the structural revenue function for upstream firms, and 
x(u�Du) is the vector
of characteristics entering the production function for the matches involving upstream
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firm u and an arbitrary collection of downstream partners Du ⊆D ∪ {0}.4 The payoff at
(A�T) for d ∈ D for the match 〈u�d〉 ∈ A is vdown(
x(u� {d})) − t〈u�d〉. I assume that the
structural revenues of downstream firms are additively separable across multiple up-
stream firm partners: vdown(
x(Ud� {d}))= ∑

u∈Ud v
down(
x(u� {d})), where Ud ⊆U ∪ {0} is

a collection of upstream firms. The reason for assuming additive separability in down-
stream firms’ payoffs across multiple upstream firms will be clear when I reintroduce
production functions below.

I will consider three types of characteristics. First consider the case studied in Sec-
tion 2, where each agent has a fixed type, a vector 
xdown

d for downstream firm d, and
a vector 
xup

u for upstream firm u. For example, 
xdown
d could be the geographic loca-

tion of d’s assembly plant, information on the products manufactured by d, the mar-
kets d sells to, and so forth. Likewise, 
xup

u could be the geographic location of u, the
past experience of u, and so forth. If all characteristics are firm-specific, 
x(u�Du) =
cat(
xup

u � 
xdown
d1

� � � � � 
xdown
dn

), whereDu = {d1� � � � � dn}.5

I also consider cases where covariates vary directly at the match 〈u�d〉 or group-of-
matches Du levels. If all characteristic are match-specific, the long vector 
x(u�Du) =
cat(
xmatch

〈u�d1〉 � � � � � 
xmatch
〈u�dn〉 ) for Du = {d1� � � � � dn}, where each 
xmatch

〈u�d〉 is the vector of charac-

teristics of the match 〈u�d〉. An example of an element of 
xmatch
〈u�d〉 is a measure of the

degree of compatibility of two firms’ inventory information systems. For group-specific
characteristics, the vector 
x(u�Du)= 
xgroup

u�Du
is not a concatenation of shorter vectors for

covariates that operate at the match 〈u�Du〉 level. An example of a group-specific char-
acteristic is that 
xgroup

u�Du
might include the percentage of upstream firm u’s downstream

firm partners that are located in countries with rigorous environmental regulations.6

X is the tuple of vectors of characteristics for all firms for firm-specific characteris-
tics, all potential matches for match-specific characteristics, and all potential groups of
matches in a market, whether the matches are part of a particular assignment or not.
Formally,

X = cat
(
(
xup
u )u∈U∪{0}� (
xdown

d )d∈D∪{0}�
(7)(
xmatch

〈u�d〉
)
u∈U∪{0}�d∈D∪{0}�

(
xgroup
u�Du

)
u∈U∪{0}�Du∈P(D∪{0})

)
�

where P(D ∪ {0}) is the power set of downstream firms. All elements of X may not
be present in many applications. For example, an application may lack match-specific

4I use the vector notation only for characteristics, in part to reserve x for an element of 
x.
5The concatenation operator makes one long vector out of a set of shorter vectors. I use the concate-

nation operator because discussing the properties of a production function using familiar ideas from the
econometrics literature will be easier if a production function takes a single vector of arguments, rather
than a number of distinct vectors as arguments.

6Some group or match characteristics may be built up from underlying firm characteristics, such as en-
vironmental standards in a firm’s home country, that do not directly enter the production function. Other
data sets may list characteristics that directly vary at the level of the match or group of matches. For exam-
ple, we could measure whether each country sends an ambassador to each other country.
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characteristics. In that case, just treat the corresponding terms as not being present in
the definition ofX .7

The fact that transfers enter total profits additively separably for both upstream and
downstream firms allows us to focus on the following production function.

Definition 3.1. The production function for (u�Du) for u ∈U andDu ⊆D∪ {0} is

f (
x(u�Du))≡ vup(
x(u�Du))+
∑
d∈Du

vdown(
x(u� {d}))�
For the Section 2 example of one-to-one matching with fixed types, f (
x(u� {d})) ≡

vup(cat(
xup
u � 
xdown

d ))+ vdown(cat(
xup
u � 
xdown

d )).
I assume that the maximum quota for all upstream firms, maxu∈U qup

u , is known and
finite. This means that 
x(u�Du) has a known maximum number of elements. For many-
to-many matching, a maximum quota and the additive separability of vdown(
x(u� {d}))
across multiple upstream firm partners makes the set of arguments of f finite.8 Additive
separability for one side of the market is restrictive. Unfortunately, I know of no other
way to define a production function without relying on parametric assumptions. In an
empirical application, a researcher might be willing to make parametric assumptions
and choose a functional form for f so that nonlinearities in an upstream firm’s profits
across its downstream firm partners are distinguished from a downstream firm’s nonlin-
earities across its upstream firm partners.

Sometimes I will view f (·) as an abstract function to be identified and estimated.
In this case, I write f (
x), where the argument 
x is an arbitrary vector of characteristics.
When an upstream firm does not use all of its quota, null arguments can be included in
the argument vector 
x of f (
x) to refer to the unfilled match slots.

3.2 Pairwise stability

Because binding quotas prevent an agent from unilaterally adding a new partner with-
out dropping an old one, the equilibrium concept in matching games allows an agent
to consider exchanging a partner. I use the innocuous convention that upstream firms
pick downstream firms.

Definition 3.2. A feasible outcome (A�T) is a pairwise stable equilibrium under the
following conditions:

7This definition ofX does not require knowledge of quotasQ, which will later be said to be unmeasured.

However, if quotas are known, the researcher can disregard including in X any 
xgroup
u�Du

for a |Du|> qup
u . The

definition of X requires dummy arguments for characteristics involving the partner of being unmatched,
0, for notational conciseness later.

8Consider an example with matches 〈u1� d1〉, 〈u1� d2〉, and 〈u2� d2〉. If the model allowed arbitrary non-
linearities in both upstream and downstream firms’ structural revenue functions, there would be a set of
firms {u1�u2� d1� d2} with production f (
x({u1�u2}� {d1� d2})), even though u1 and u2, u2 and d1, and d1 and
d2 have no direct links.
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(i) For all 〈u1� d1〉 ∈A, 〈u2� d2〉 ∈A, 〈u1� d2〉 /∈A, and 〈u2� d1〉 /∈A,

vup(
x(u1�Du1(A)
)) +

∑
d∈Du1 (A)\{d1}

t〈u1�d〉 + t〈u1�d1〉

(8)
≥ vup(
x(u1�

(
Du1(A)\{d1}

) ∪ {d2}
)) +

∑
d∈Du1 (A)\{d1}

t〈u1�d〉 + t̃〈u1�d2〉�

where t̃〈u1�d2〉 ≡ vdown(
x(u1� {d2}))− (vdown(
x(u2� {d2}))− t〈u2�d2〉).
(ii) For all 〈u�d1〉 ∈A,

vup(
x(u�Du(A))) +
∑

d∈Du(A)\{d1}
t〈u�d〉 + t〈u�d1〉

≥ vup(
x(u�Du(A)\{d1})
) +

∑
d∈Du(A)\{d1}

t〈u�d〉�

(iii) For all 〈u�d〉 ∈A,

vdown(
x(u� {d})) − t〈u�d〉 ≥ 0�

(iv) The inequality (8) holds if either or both of the existing matches represent a free
quota slot, namely 〈u1� d1〉 = 〈u1�0〉 or 〈u2� d2〉 = 〈0� d2〉. In this case, the transfers corre-
sponding to the free quota slots in (8), t〈u1�d1〉 or t〈u2�d2〉, are set equal to 0.

Part (i) of the definition of pairwise stability says that upstream firm u1 prefers its
current downstream firm d1 instead of some alternative downstream firm d2 at the trans-
fer t̃〈u1�d2〉 that makes d2 switch to sourcing its supplies from u1 instead of its equilibrium
upstream firm, u2. Because of transferable utility, u1 can always cut its price and at-
tract d2’s business; at an equilibrium, u1 would lower its profit from doing so if the new
business supplanted the relationship with d1. Part (i) is the component of the defini-
tion of pairwise stability that I will focus on in this paper. Parts (ii) and (iii) deal with
matched agents that do not profit by unilaterally dropping a relationship and becoming
unmatched. These are individual rationality conditions: all matches must give an incre-
mental positive surplus. Finally, part (iv) states that two firms, where one or both have
free quota, do not want to form a match.

3.3 Properties of pairwise stable outcomes in many-to-many matching games

The literature has established existence and uniqueness results for pairwise stable equi-
libria (A�T) under a restriction on the upstream firm preferences vup(
x(u�Du)) known
as substitutes. Substitutes restricts how one upstream firm ranks sets of downstream
firms.9 In the interest of brevity, I refer the interested reader to Definitions 5 and 6 in

9Note that in this context “substitutes” refers to how multiple downstream firms enter preferences, not
how different individual firm characteristics enter production functions. The latter use is the more common
use of “substitutes” and “complements” in this article.
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Hatfield and Kominers (2010) for this restriction expressed in a more general matching
game in contract space. Hatfield and Kominers showed several results (some are implied
by more general results). Under substitutable preferences, a pairwise stable equilibrium
is guaranteed to exist. Furthermore, any pairwise stable equilibrium is automatically
also fully stable. A fully stable equilibrium is robust to deviations by any coalition of
downstream and upstream firms. One such coalition is the coalition of all firms. Because
of this paper’s focus on transferable utility, an assignment that is part of a fully stable
equilibrium outcome will maximize the sum of production in the entire matching econ-
omy. Indeed, the equilibrium assignment will be computable by a sufficiently general
social planner’s linear programming problem. Furthermore, if the characteristics enter-
ing the production function have continuous support and the production function is
continuous in its arguments, then a unique assignment A will solve the social plan-
ner’s linear programming problem and hence be part of any pairwise stable equilibrium
(A�T) with probability 1. To summarize, the substitutes condition ensures existence of
a pairwise stable assignment and the uniqueness of that assignment with probability 1,
in a many-to-many, transferable utility matching game. The substitutes condition also
leads to a useful algorithm for computing equilibrium assignments.

This paper will not, for most sections, impose the substitutes condition, as many
empirical applications of many-to-many matching games are to situations where an
upstream firm could view two or more downstream firms as complements. For exam-
ple, Fox (2010) empirically examined specialization by automotive suppliers, where a
supplier could have higher production (or lower cost) by supplying multiple car parts to
the same automotive assembler (here view a car part as a downstream firm), compared
to one car part each to several assemblers.

If preferences allow for complementarities between multiple downstream firms
matched to the same upstream firm, Hatfield and Milgrom (2005), Pycia (2008), Hatfield
and Kojima (2008), and Hatfield and Kominers (2010) presented examples of preferences
where no pairwise stable equilibrium exists. The counterexamples mean that general ex-
istence theorems do not exist. However, recent empirical and theoretical work on non-
transferable utility matching games has presented situations under which the probabil-
ity that a pairwise stable equilibrium exists converges to 1 as the number of agents in the
matching market grows large (Kojima, Pathak, and Roth (2010)). In this sense, nonexis-
tence of pairwise stable equilibria may be a minor problem in some markets of empirical
interest. This paper will maintain the assumption that the data reflect a pairwise stable
equilibrium.10

Under complementarities, there is no equivalence of pairwise and fully stable equi-
libria, so pairwise stable equilibria will not solve a social planner’s problem. Pairwise sta-
ble equilibria can be inefficient. The latter property means multiple equilibrium assign-
ments can exist with positive probability. I discuss multiple equilibrium assignments in
Section 4.5.

10Other researchers have examined games with potential existence issues. In the nonnested-with-
matching literature on estimating normal-form Nash games, Ciliberto and Tamer (2009) threw out a par-
ticular realization of the error term’s contribution to the likelihood if no pure strategy equilibrium exists.
In the current paper, probabilities will not sum to 1 if equilibria sometimes do not exist. In computational
experiments, I rarely stumble across parameters where no pairwise stable outcome exists.
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3.4 Using matches only: Local production maximization

A matching-game outcome (A�T) has two components. I consider using data on
only A. This is because researchers often lack data on transfers, even when the agents
use transfers. Upstream and downstream firms exchange money, but the transfer values
are private, contractual details that are not released to researchers.

I will exploit the transferable utility structure of the game to derive an inequality
that involves A but not T . For upstream firms u1 and u2, consider an example where
Du1(A)= {d1} andDu2(A)= {d2}. The inequality (8) becomes

vup(
x(u1� {d1})
) + t〈u1�d1〉 ≥ vup(
x(u1� {d2})

) + vdown(
x(u1� {d2})
)

(9)
− (
vdown(
x(u2� {d2})

) − t〈u2�d2〉
)

after substituting in the definition of t̃〈u1�d2〉. Likewise, there is another inequality for u2’s
deviation to match with d1 instead of d2:

vup(
x(u2� {d2})
) + t〈u2�d2〉 ≥ vup(
x(u2� {d1})

) + vdown(
x(u2� {d1})
)

(10)
− (
vdown(
x(u1� {d1})

) − t〈u1�d1〉
)
�

Adding (9) and (10), canceling the transfers t〈u1�d1〉 and t〈u2�d2〉 that now are the same on
both sides of the inequality, and substituting the definition of a production function,
Definition 3.1, creates the new inequality

f
(
x(u1� {d1})

) + f (
x(u2� {d2})
) ≥ f (
x(u1� {d2})

) + f (
x(u2� {d1})
)
�

This is a local production maximization inequality: “local” because only exchanges of
one downstream firm per upstream firm are considered, and “production maximiza-
tion” because the implication of pairwise stability says that the total output from two
matches must exceed the output from two matches formed from an exchange of part-
ners.

The local production maximization inequality suggests that interactions between
the characteristics of agents in production functions drive the equilibrium pattern of
sorting in a market. As the same set of firms appears on both sides of the inequality,
terms that do not involve interactions between the characteristics of firms difference
out. In a one-to-one matching game, if f (
x(u� {d}))= 
xup

u β
up + 
xdown

d βdown for parame-
ter vectors βup and βdown, then a local production maximization inequality is


xup
u1 β

up + 
xdown
d1

βdown + 
xup
u2 β

up + 
xdown
d2

βdown

(11)
≥ 
xup

u1 β
up + 
xdown

d2
βdown + 
xup

u2 β
up + 
xdown

d1
βdown

or 0 ≥ 0, so the definition has no empirical content. Theoretically, the uninteracted char-
acteristics are valued equally by all potential partner firms and are priced out in equilib-
rium.11

11For some policy questions, the cancellation of characteristics that are not interactions between the
characteristics of multiple firms is an empirical advantage. Many data sets lack data on all important char-
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More generally, the equilibrium concept of pairwise stability can be used to form a
local production maximization inequality.

Lemma 3.3. Given a pairwise stable outcome (A�T), let B1 ⊆A, let π be a permutation
of the downstream firm partners in B1, and let

B2 = {〈π〈u�d〉�u〉 | 〈u�d〉 ∈ B1
}
�

Then the inequality

∑
〈u�d〉∈B1

f
(
x(u�Du(A))) ≥

∑
〈u�d〉∈B2

f
(
x(u�Du((A\B1)∪B2)

))
(12)

holds.

All proofs are found in the Appendix.12 The definition of a local production maxi-
mization inequality is similar to (12), except that no particular outcome (A�T) needs to
be stated. This definition will be used formally in the identification proofs.

Definition 3.4. Let there be a set of matches B1 and let B2 be a permutation π of B1,
B2 = {〈π〈u�d〉�u〉 | 〈u�d〉 ∈ B1}� For each u where 〈u�d〉 ∈ B1, let there be a set of down-
stream firmsDu such that 〈u�d〉 ∈ B1 implies d ∈Du. Call

∑
〈u�d〉∈B1

f (
x(u�Du))≥
∑

〈u�d〉∈B1

f
(
x(u� (Du\{d})∪ {π〈u�d〉}))

a local production maximization inequality.13

The definition of pairwise stability is powerful: the condition that no upstream firm
wants to swap a single downstream firm partner for a single new partner at the equilib-
rium transfers implies local production maximization inequalities involving large sets of
matches B1 and B2. The potential large size of B1 and B2 in the lemma will be important
for some of the nonparametric identification theorems below.14

acteristics of firms. If some of these characteristics affect the production of all matches equally, the char-
acteristics difference out and do not affect the assignment of upstream to downstream firms. If the policy
questions of interest are not functions of these unobserved characteristics, then differencing them out leads
to empirical robustness to missing data problems.

12A permutation π of the downstream firm partners applied to a set of matches {〈u1� d1〉� 〈u2� d2〉�
〈u3� d3〉} gives each upstream firm a new downstream firm partner. An example of a permutation is {〈u1� d3〉�
〈u2� d1〉� 〈u3� d2〉}. Let π〈u1� d1〉 = d3 give the index of the new downstream firm partner d3 of the upstream
firm u1.

13The notation B2 is not, strictly speaking, needed for Definition 3.4. Later I use B1 and B2 when showing
that an inequality satisfies Definition 3.4.

14I have no proof that satisfying (12) for all pairs (B1�B2) is a sufficient (as opposed to necessary) condi-
tion forA to be part of a pairwise stable equilibrium (A�T) in many-to-many matching games.
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4. The rank order property

4.1 Data on many independent matching markets

I will consider identification using data on the population of different matching markets.
As before, a matching market is described by (D�U�Q�X�A�T). Data on the transfers
T are often not available. Similarly, quotas, Q, are often an abstraction of the matching
model and are usually not found in data sets on upstream and downstream firms. There-
fore, I will explore identification using data on (D�U�X�A). From now on, I subsumeD
and U into X so as to use more concise notation. The researcher then observes (A�X)
across markets.15

With data on the population of statistically independent and identically distributed
as well as economically unrelated matching markets, the researcher is able to identify
Pr(A |X), the probability of observing assignment A given that the market has charac-
teristicsX as defined previously. To ensure that the model gives full support to the data,
I wish that Pr(A |X) > 0 for any physically feasible (matches of each agent under that
agent’s quota) assignmentA.16 The probability Pr(A |X)will be induced by a stochastic
structure S. Then

Pr(A |X)≡ Pr(A |X; f 0� S0)≡EQ|X [Pr(A |X�Q; f 0� S0)]�

where Pr(A | X�Q; f 0� S0) is the probability of an assignment A being observed given
the exogenous characteristics X , the exogenous quotas Q, the true match production
function f 0, and the true stochastic structure S0. The functions f 0 and S0 are unknown
to the econometrician and are arguments to the endogenous-variable data generating
process Pr(A |X�Q; f 0� S0), but they are fixed across markets and are not random vari-
ables. The matching model and any equilibrium-assignment selection rule together in-
duce the distribution Pr(A |X�Q; f 0� S0). I will discuss primitive formulations of error
terms in detail below. The quotas inQ are unmeasured, so the econometrician observes
data on Pr(A | X; f 0� S0) ≡ EQ|X [Pr(A | X�Q; f 0� S0)], where the expectation over Q is
taken with respect to its distribution conditional onX .17

4.2 The rank order property

I will rely on a rank order property to add econometric randomness to the matching
outcomes.18 I first describe a nonprimitive rank order property for matching games. In

15For the sake of brevity, I assume the researcher has data on all elements of X . By adding additional
notation, one could extend the nonparametric identification results to the case where the elements of X
corresponding to some firms, matches, or groups of matches are missing. See Fox (2007) for a related dis-
cussion on estimating the single-agent multinomial choice model without data on all available choices.

16This focus on allowing errors to affect the realization ofA distinguishes this paper’s approach to match-
ing games from the work on estimating Nash games by Pakes, Porter, Ho, and Ishii (2006), which does not
allow for these errors in general normal-form Nash games and so, except in a few cases such as ordered
choice, does imply the analog to Pr(A |X)= 0 for some physically possibleA’s.

17The transfers T do not need to be integrated out because T is a separate endogenous outcome fromA.
18In single-agent discrete choice problems with the payoff structure x′

a�iβ+ εa�i for agent i and choice a,
S represents the distribution of error terms εa�i . S is not identified under the standard (rank order property)
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Section 2, this was related to production maximization in the entire economy. The gen-
eral model allows many-to-many matching, where pairwise stability does not give a link
to economy-wide production, efficiency. The rank order property can be seen as a sto-
chastic version of local production maximization. The benefits of the rank order prop-
erty were given in the Introduction.

Property 4.1. Let A1 be a feasible assignment for a market with characteristics X . Let
B1 ⊆A1 and let π be a permutation of the downstream firm partners in B1, giving B2 =
{〈π〈u�d〉�u〉 | 〈u�d〉 ∈ B1}� Let A2 = (A1\B1) ∪ B2. Let S ∈ S be any distribution of the
error terms and let f ∈ F be any production function. The rank order property states
that ∑

〈u�d〉∈B1

f
(
x(u�Du(A1))

)
>

∑
〈u�d〉∈B2

f
(
x(u�Du(A2))

)
(13)

if and only if

Pr(A1 |X; f�S) > Pr(A2 |X; f�S)�
Keep in mind that X , f , and S are held fixed: the rank order property is an as-

sumption about the stochastic structure of the model. To understand the rank or-
der property, consider a situation where A1 contains thousands of matches and B1 =
{〈u1� d1〉� 〈u2� d2〉} contains only two matches. ThenA2 = (A1\B1)∪B2 is equal toA1 ex-
cept that the matches B2 = {〈u1� d2〉� 〈u2� d1〉} form. Given X and Q, neither A1 nor A2
may be a stable assignment to the matching model without error terms. But A1 might
dominateA2 in the deterministic model in that at least two agents in B2 would prefer to
match with each other instead of their assigned partners, leading toA1. More generally,
if the local production maximization inequality (13) is satisfied, then some agents in B1
want to deviate in the deterministic matching model. In a model with error terms, both
A1 andA2 could be pairwise stable assignments to some realizations of the unobserved
components in the matching model. The property says that A1 will be more likely to be
a pairwise stable assignment to some realized model thanA2.19

As the quotas in Q are not observed in many empirical applications, a slightly more
primitive version of Property 4.1 is that (13) holds if and only if Pr(A1 | X�Q; f�S) >
Pr(A2 |X�Q; f�S) for any valid Q. Then taking expectations with respect to Q |X gives
Assumption 4.1. Even if Q is unobserved, for the most part I have only considered in-
equalities where the total number of matches of each agent in A1 and A2 is kept the
same.20 If unmatched agents are not considered in B1 and B2, and if A1 is a feasible
assignment forQ, thenA2 is also a feasible assignment for thatQ.

conditions for the identification of β in either binary choice or multinomial choice (Manski (1975, 1988)).
In matching, I will focus on identifying f and not S.

19The rank order property can be rejected by the data if the following set is empty: the set of f ∈ F such
that

∑
〈u�d〉∈B1

f (
x(u�Du(A1))) >
∑

〈u�d〉∈B2
f (
x(u�Du(A2))) if and only if Pr(A1 |X) > Pr(A2 |X) holds for

all (A1�A2�B1�B2�X), whereA1,A2, B1, and B2 are defined in Property 4.1 and Pr(A |X) is identified from
the data. Itemizing over all f ∈ F is computationally difficult; more work needs to be done to operationalize
a test based on this idea.

20Unmatched agents 0 could be included in matches in B1. For nonparametric identification, data on
unmatched agents will not be needed, except for one theorem.
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4.3 A Sufficient condition for the rank order property

This subsection explores a sufficient condition for the rank order property, Property 4.1,
in the context of models where assignments have unobserved components in produc-
tion. In this subsection only, I impose the condition that the equilibrium (A�T) satisfies
full stability, as discussed in Section 3.3. This ensures that a pairwise stable equilibrium
(A�T) always exists, that the equilibrium assignment A is unique with probability 1,
and that the equilibrium assignment A is computable as a social planner’s problem.
Substitutable preferences is a sufficient condition for these properties.

There is a finite, although potentially large, number of assignments. The social plan-
ning problem is the single-agent, unordered, discrete choice problem of Manski (1975),
where the single agent is the social planner choosing from the finite (but often large)
number of assignments. From Manski’s work, we know the sufficient condition that will
arise. For an assignment A, let its total production be

∑
〈u�d〉∈A f(
x(u�Du(A))) + ψA,

where ψA is an unobserved component of the production of assignment A. Let ψ be
the vector of all ψA’s. Let ψ have density S and let ψ be independent of Q and X .21 Let
Pr(A |Q�X; f�S) be the probabilityA is picked by the social planner.

Lemma 4.1. Let the payoff to the social planner for assignment A be
∑

〈u�d〉∈A f(
x(u�
Du(A))) + ψA and let the social planner choose an assignment to maximize its payoff.
Let the density S be exchangeable. Then the rank order property (Property 4.1) holds.

This lemma was proved in Goeree, Holt, and Palfrey (2005) and is a slight generaliza-
tion of a result in Manski (1975).22

The social planner errors can be interpreted as errors in the deterministic model
from finding the true stable assignment. One could then view exchangeability of
the joint density as a structural assumption on the equilibrium-assignment selection
process. Adding errors to a deterministic model is similar to the quantile-response-
equilibrium method of perturbing behavior (Goeree, Holt, and Palfrey (2005)). The social
planning problem is a structural assumption that does exactly generalize the intuition
from the empirical matching literature (without error terms) that assignments with, say,
more assortative matching are more likely to occur.23

21There is no need for the density S to be the same for all marketsX . See Fox (2007) for more discussion
of letting X be a conditioning argument in S in single-agent, multinomial choice. While the density S can
depend on X , it must still be exchangeable conditional on X . Thus, the rank order property is unlikely to
hold if, across matches within a market, observed and unobserved components of match production are
correlated: there is omitted variable bias.

22An exchangeable joint density satisfies g(y1� y2� � � � � yn) = g(πy1�πy2� � � � �πyn) for any permutation π
of any vector of arguments (y1� � � � � yn).

23An exchangeable joint density for assignment-level errors is a sufficient but not necessary condition for
the rank order property. Consider the comparison of an assignment A1 = {〈1�1〉� 〈2�2〉� 〈3�0〉� 〈0�3〉}, where
downstream and upstream firms 3 are both unmatched, to another assignment A2 = {〈1�2〉� 〈2�3〉� 〈3�1〉},
where all firms are matched. The local production maximization inequality in Property 4.1 does not al-
low comparing A1 and A2 because A2 is not a rearrangement of downstream firm partners from A1: A2
does not reallocate the former states of being unmatched. Therefore, the comparison of A1 and A2 is
not relevant for the rank order property. However, the model of a social planner with exchangeable er-
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4.4 Match-specific error terms

The closest analog to the practice of adding action-specific error terms to perfect infor-
mation Nash games in matching games (a nonnested class of games) is adding match-
specific error terms ε〈u�d〉 (Andrews, Berry, and Jia (2004), Bajari, Hong, and Ryan (2010),
Beresteanu, Molchanov, and Molinari (2008), Berry (1992), Bresnahan and Reiss (1991),
Ciliberto and Tamer (2009), Galichon and Henry (2008), Jia (2008), Mazzeo (2002), Tamer
(2003)). Let the total output of a set of downstream firm partners Du for upstream firm
u be

f (
x(u�Du))+
∑
u∈Du

ε〈u�d〉� (14)

where ε〈u�d〉 is the match-〈u�d〉-specific error term, which is independent of all com-
ponents of X and Q. Let the stochastic structure S represent the distribution of ε〈u�d〉.
Let the game’s outcome be fully stable to ensure uniqueness of equilibrium assignments
with probability 1. Then, in the perfect information world where ε〈u�d〉 is observed by all
agents in the model but is not in the data,

Pr(A |X�Q; f�S)=
∫
ε

1[Amaximizes output |X�Q�ε]dS(ε)� (15)

where ε is the vector of error terms for allU ·D possible matches as well as the option of
being single for each agent. Under this model, S can be chosen so that each physically
feasibleA will always have positive probability.

For matching, unlike single-agent discrete choice, it is not a theorem that i.i.d. er-
rors yield the rank order property for matching, Property 4.1. All models are approxima-
tions to reality. If the true production function is thought to include i.i.d. match-specific
shocks as in (14) and, therefore, assignment probabilities are given by (15), then the rank
order property may actually be a pretty close approximation. After all, the transferable
utility and price taking structure of the game does naturally imply that adding produc-
tion functions is much more natural than in a noncooperative Nash game. I now present
simulation results that examine how closely a perfect information matching game with
shocks as in (14) is approximated by the rank order property, a natural generalization of
prior work on matching games without econometric errors.

Table 1 includes results from simulations that compute assignment probabilities for
a one-to-one, two-sided matching game where match production is f (
x(u� {d}))+ε〈u�d〉.
There are three upstream firms and three downstream firms. The details of the game are
given in the footnote to Table 1. The parameters of the game are chosen so that two as-
signments A1 and A2 give equal deterministic production, neither is the deterministic

rors makes predictions about the relative frequencies of A1 and A2 based on their relative sums of pro-
duction. For example, Lemma 4.1 says

∑
〈u�d〉∈A1

f (
x(u�Du(A1))) = ∑
〈u�d〉∈A2

f (
x(u�Du(A2))) if and only
if Pr(A1 | X; f�S) = Pr(A2 | X; f�S). This is despite the fact that in A1, match 〈3�3〉 will often form if it
gives more production than being unmatched, so, in many realizations of uncertainty, A1 will not be a
stable assignment. Therefore, the rank order property is weaker than a social planner with exchangeable
assignment-level errors.
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Table 1. Assignment probabilities for two assignments with equal deterministic production,
with i.i.d. match-specific unobservables, by distribution.a

No. Firms Distribution Error Standard Pr(A1 |X; f�S)−
U =D for i.i.d. Errors, S Deviation Pr(A1 |X; f�S) Pr(A2 |X; f�S) Pr(A2 |X; f�S)

3 N(0�1) 1 0�02126 0�03640 −0�01514
3 N(0�36) 6 0�07897 0�07888 0�00009
3 N(0�400) 20 0�06554 0�06543 0�00011

3 0�33 ·N(0�5�0�04) 0�53 0�000098 0�001791 −0�00163
+ 0�67 ·N(−0�5�0�123)

3 0�33 ·N(2�5�0�04) 2�44 0�047894 0�045908 0�001986
+ 0�67 ·N(−2�5�0�123)

3 0�33 ·N(8�0�4�0) 6�98 0�033811 0�033967 −0�000156
+ 0�67 ·N(−6�0�6�25)

aThe rank order property says Pr(A1 |X; f 0� S) − Pr(A2 |X; f 0� S) = 0 for any S. Total match production is f (X(u� {d})) +
ε〈u�d〉 , with the error’s distribution given in the table. The assignment is calculated using linear programming (Roth and So-
tomayor (1990, Chapter 8)). Each integral is simulated by using 1 million draws of the realizations for the collection of error
terms for all matches and being single. Given the number of replications, the differences in the table probably do not reflect
simulation error.

There are three upstream firms and three downstream firms in a one-to-one, two-sided matching game. The production of
being unmatched is 0. The deterministic match production levels for matching with the three downstream firms are {3�1�2�8}
for upstream firm 1, {1�2�8�1} for upstream firm 2, and {3�1�1} for upstream 3. I compute the probabilities for the assignments
A1 = {〈1�2〉� 〈2�3〉� 〈3�1〉} with production 1 + 1 + 3 = 5 and A2 = {〈1�1〉� 〈2�3〉� 〈3�2〉} with production 3 + 1 + 1 = 5. I chose the
example so that assignment A2 will be “more vulnerable” to a deviation to an assignment A3 = {〈1�1〉� 〈2�2〉� 〈3�3〉} with deter-
ministic production 3 + 2�8 + 2�8 = 8�6, as only two matched pairs in A2 , rather than all three pairs in A1 , need to exchange
partners to deviate to A3 .

stable assignment, and deviation by agents in A2 is more attractive in an ease metric
(two matched pairs could exchange partners, leaving the third pair alone), which pro-
vides a more compelling test against the idea that the rank order property holds approx-
imately.

Table 1 considers six distributions S for i.i.d. match-specific unobservables. The ta-
ble uses a simulation of the integral in (15) to compute Pr(A1 |X; f�S)− Pr(A2 |X; f�S),
a measure of how far off the rank order property is. The first line considers a standard
normal distribution. As the variance is small, and both A1 and A2 are not pairwise
stable assignments in the deterministic game, the assignment probabilities are indi-
vidually small. However, the difference Pr(A1 | X; f�S) − Pr(A2 | X; f�S) = −0�01514 is
large relative to the magnitudes. The second line increases the normal standard devi-
ation to 6. Both assignment probabilities increase to around 0.079, but the difference
Pr(A1 |X; f�S) − Pr(A2 |X; f�S) decreases in absolute value to 0.00009. The third line
increases the standard deviation to 20; now the probabilities are around 0.065, although
Pr(A1 |X; f�S)− Pr(A2 |X; f�S) remains small, at 0.00011.

I also investigate to what degree the previous simulations relied on normality. The fi-
nal three experiments in Table 1 consider asymmetric, mixed normal distributions with
two modes. Again, it appears that the absolute value of Pr(A1 |X; f�S)− Pr(A2 |X; f�S)
is smaller when the standard deviation of the errors is higher.

Table 1 implies that assignment probabilities that differ by exchanges of only one
downstream firm for each upstream firm are nearly rank ordered by their determin-
istic payoffs when true payoffs include match-specific stochastic components. In Fox
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(2010), I introduced a maximum score estimator and presented a Monte Carlo study that
shows the estimator has good finite sample performance when the data are generated
by matching games with match-specific unobservables.

4.5 Multiple equilibrium assignments

As argued in Section 3.3, games with complementarities across multiple downstream
partners for the same upstream firm can have multiple equilibrium assignments with
positive probability. In a game with multiple equilibrium assignments, (1) becomes

Pr(A |X�Q; f�S) =
∫
ψ

1[A selected assignment |A stable�X�Q�ψ]
(16)

× 1[A pairwise stable |X�Q�ψ]dS(ψ)�
Let Υ(A |X�Q; f�S) be equal to

∫
ψ 1[A pairwise stable |X�Q�ψ]dS(ψ)� Define A1 and

A2 as in Property 4.1. For a model with multiple equilibrium assignments, the rank order
property (Property 4.1) will hold under the following conditions: (i) Υ(A1 |X�Q; f�S) >
Υ(A2 |X�Q; f�S) if and only if inequality (13) holds, and (ii) Pr(A1 |X�Q; f�S) > Pr(A2 |
X�Q; f�S) if and only if Υ(A1 | X�Q; f�S) > Υ(A2 | X�Q; f�S). Part (i) says A1 will be
more likely to be stable than A2 if A1 has a higher production after an exchange of
one downstream firm for each upstream firm in some set B1 ⊆ A1. Part (ii) says the
equilibrium-assignment selection rule preserves the rank ordering of pairwise stabil-
ity: assignments that are more likely to be pairwise stable are more likely to occur. These
conditions together imply Property 4.1 and hence allow a unified framework to be used
to study identification and estimation of matching games, regardless of the number of
stable assignments for each ψ andX combination.

In the literature on estimating Nash games, a nonnested class with matching games,
some researchers assume a particular selection rule when such a rule is easy to im-
plement (Jia (2008)); other researchers use a numerical procedure and report the first
equilibrium the routine converges to (Seim (2006)). Assumptions about an equilibrium-
assignment selection rule may be just as arbitrary as the above approaches, but for now
they are currently the only feasible alternative for matching games with large numbers
of agents and multiple equilibrium assignments.24

5. Derivative-based nonparametric identification

In this section, I prove theorems about the identification of features of production func-
tions in many-to-many matching games, following Definition 2.1. The intuition for some
of these results was given in Section 2.5 for the case of one-to-one matching. Here, I fo-
cus on stating general theorems precisely.

24The literature on estimating parametric Nash games, a nonnested class with matching games, presents
strategies with perhaps fewer assumptions but higher computational demands in estimation for dealing
with multiple equilibria. See Bajari, Hong, and Ryan (2010) and Ciliberto and Tamer (2009). The nonpara-
metric identification of other model components has not been studied while simultaneously employing
these methods.
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As mentioned before, I will explore identification with market-level data on (A�X).
Let (A�X) be i.i.d. across matching markets. With these data, I can identify both Pr(A |
X) andG(X), the distribution ofX across markets. I maintain the following assumption
for derivative-based identification.

Assumption 5.1.

(i) Each f ∈ F is three-times differentiable in all of its arguments.

(ii) X has support equal to the product of the marginal supports of the scalar elements
of the vectors that compriseX . Each scalar element that derivatives are taken with respect
to has continuous support on an open rectangle of R.

I make this assumption to focus on cross-partial derivatives, for example. These con-
ditions can be relaxed.25

The features of the production functions that govern sorting depend on how the
characteristics that enter 
x(u�Du) vary. I will present results where characteristics vary at
the levels of the firm u or d, the individual match 〈u�d〉, and the group (u�Du) of down-
stream firms matching with one upstream firm. Keep in mind that a unit of observation
is a market. I use variation in market-level observablesX for identification.

5.1 Derivative-based identification with firm-specific characteristics

First I consider firm-specific characteristics.

Theorem 5.2. Let 
x be a given point of evaluation of f . Let x1 and x2 be scalar charac-
teristics in 
x from two different firms, either one upstream firm and one downstream firm

or two downstream firms. Assume ∂2f 0(
x)
∂x1 ∂x2

�= 0. Then the sign of ∂
2f 0(
x)
∂x1 ∂x2

is identified.

The theorem is stated for a given point of evaluation 
x for clarity.26 As the theorem
holds for all points of evaluation with nonzero cross-partial derivatives, the theorem
establishes the global identification of the listed properties. The intuition behind the
theorem was presented in Section 2.5.1. The next result follows.

Theorem 5.3. Let 
x be a given point of evaluation of f . Let x1 and x2 be scalar charac-
teristics in 
x from two different firms, and let x3 and x4 be two scalar characteristics from
two different firms as well. The identities of the firms in the two pairs (x1�x2) and (x3�x4)

25While there are definitions such as increasing differences (Milgrom and Shannon (1994)) that encom-
pass complementarities without relying on differentiable f ’s and continuous support for the x’s, working
with broader definitions makes the results harder to interpret and to compare to Becker’s (1973).

26The assumption ∂2f 0(
x)
∂x1 ∂x2

�= 0 greatly shortens the proof, which otherwise would require more complex

limit arguments. This unfortunately rules out the interesting possibility that f 0 is a constant function, as

then ∂2f 0(
x)
∂x1 ∂x2

= 0. However, the assumption that ∂
2f 0(
x)
∂x1 ∂x2

�= 0 was not made to rule out constant functions. In-

deed, the rank order property ensures (if f 0 is a constant) that all assignments with the same set of nonsingle
agents occur with equal probabilities. Allowing for f 0 to be a constant function is equivalent to allowing for
0 parameter values in the single-agent, multinomial logit: all choices have the same probabilities.
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can be the same or not. Assume ∂2f 0(
x)
∂x1 ∂x2

�= 0 and ∂2f 0(
x)
∂x3 ∂x4

�= 0. Then the ratio ∂2f 0(
x)
∂x1 ∂x2

/∂
2f 0(
x)
∂x3 ∂x4

is
identified.

Section 2.5.2 presented the intuition for this theorem.27 This is perhaps the most im-
portant result on identification in this paper. The ratio of the degree of complementari-

ties, ∂
2f 0(
x)
∂x1 ∂x2

/∂
2f 0(
x)
∂x3 ∂x4

, can be identified from qualitative data on who matches with whom.

5.2 Derivative-based identification with match-specific characteristics

The characteristics in 
x(u�Du) can be specific to the individual matches 〈u�d〉.28 In this
case, the feature of f that governs sorting is f ’s second derivatives.

Theorem 5.4. Let 
x be a given point of evaluation of f . Let the scalar x be a match-

specific element of 
x. Assume ∂2f 0(
x)
∂x2 �= 0. The sign of ∂

2f 0(
x)
∂x2 is identified.

As with firm-specific characteristics, a researcher can measure the relative impor-

tance of sorting on various characteristics in the production function, ∂
2f 0(
x)
∂x2

1
/∂

2f 0(
x)
∂x2

2
.

Theorem 5.5. Let 
x be a given point of evaluation of f . Let the two scalars x1 and
x2 be distinct match-specific elements of 
x, corresponding to different matches. Assume
∂2f 0(
x)
∂x2

1
�= 0 and ∂2f 0(
x)

∂x2
2

�= 0. The ratio ∂2f 0(
x)
∂x2

1
/∂

2f 0(
x)
∂x2

2
is identified.

The theorems do not require strong properties on the characteristics not given spe-
cial attention in the statement of the theorems. For example, x1 and x2 could be match-
specific, allowing Theorem 5.5 to be applied, while x3–x6 could be firm-specific, requir-
ing Theorem 5.3. The presence of the match-specific x1 and x2 does not invalidate ap-
plying Theorem 5.3 to x3–x6.

5.3 Derivative-based identification with group-specific characteristics

Characteristics can be specific to a group (u�Du) of downstream firms and the upstream
firm that the downstream firms match with. An example of using the estimator in this
paper for the group-characteristic case is Fox and Bajari (2010), who modeled bidders
matching to a package of geographic licenses in a spectrum auction. A characteristic
of a package of licenses is the extent of the geographic complementarities among the
licenses. Fox and Bajari used a measure like the gravity equation in international trade
to create a proxy for these geographic complementarities.

27The assumptions ∂2f 0(
x)
∂x1 ∂x2

�= 0 and ∂2f 0(
x)
∂x3 ∂x4

�= 0 allow Theorem 5.2 to be used in the proof and avoid divi-

sion by zero in the ratio ∂2f 0(
x)
∂x1 ∂x2

/ ∂
2f 0(
x)
∂x3 ∂x4

.
28Some might think firm-specific characteristics are a special case of match-specific characteristics.

Firm-specific characteristics increase the difficulty of showing the identification of features of f 0 because
the same firm characteristics must appear on the left and the right sides of a local production maximization
inequality. By contrast, hypothetical markets exist where the match-specific characteristics for the matches
〈u1� d1〉 and 〈u2� d2〉 may take on any pair of values, under Assumption 5.1.
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Theorem 5.6. Let 
x be a given point of evaluation of f and let x be a group-specific

element of 
x. Assume ∂2f 0(
x)
∂x2 �= 0. The sign of ∂

2f 0(
x)
∂x2 is identified.

The proof of this theorem is omitted because the mathematical argument is nearly
identical to the proof of Theorem 5.4.

Theorem 5.7. Let 
x be a given point of evaluation of f , and let the two scalars x1 and

x2 be distinct group-specific elements of 
x. Assume ∂2f 0(
x)
∂x2

1
�= 0 and ∂2f 0(
x)

∂x2
2

�= 0. The ratio
∂2f 0(
x)
∂x2

1
/∂

2f 0(
x)
∂x2

2
is identified.

Likewise, the proof is omitted because it is nearly identical to that of Theorem 5.5.

6. Nonparametric identification up to a positive monotonic transformation

Section 2.6 motivated why identifying production functions up to a positive monotonic
transformation is distinct from derivative-based identification. Here I focus on precise
statements of general theorems.

6.1 Preliminaries for identification up to a positive monotonic transformation

Positive monotonic transformations preserve rankings, so we must rule those transfor-
mations out.

Assumption 6.1. Let F be a class of production functions. For any two members f 1 and
f 2 of this class F , for no positive, strictly monotonic functionm, is it the case that f 1(
x)=
m ◦ f 2(
x) for all 
x.

Matzkin (1993) presented classes of functions that rule out positive monotonic
transformations. An example is the class of least-concave functions.

Recall that 
x is one long vector of scalar characteristics. Call the first, scalar element
of this vector, x1. Call all other elements 
x−1. The collection of market characteristics
isX .

Assumption 6.2.

• The conditional density of characteristic 1, g(x1 | 
x−1�X\
x), has an everywhere posi-
tive density in R.29

• Each f ∈ F is continuous in its argument x1 and is either strictly increasing or strictly
decreasing in x1.

• X has support equal to the product of the marginal supports of the scalar elements of
the vectors that compriseX .

29The notation X\
x means all elements of X other than those in the specified vector 
x. Recall 
x can
include firm-, match-, and group-specific characteristics. This is a slight notational abuse as 
x is a long
vector formed from the concatenation of subvectors, rather than the set of such subvectors.
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• Each scalar element of a vector in X has either strictly discrete or strictly continuous
support.

• Each f ∈ F is continuous in any scalar element of 
xwith continuous support.

The assumption allows all but one of the characteristics in 
x to have discrete or qual-
itative support.30 This assumption replaces the earlier Assumption 5.1, which is only for
the derivative-based identification theorems.31

The technical use of Assumption 6.2 involves the lack of a positive monotonic trans-
formation and its relationship to a strict inequality. I state the argument in a separate
lemma, because the continuous-covariate argument is used in the same way in the
proofs of the three identification theorems where f is learned up to a positive monotonic
transformation.

Lemma 6.3. Let f 1 and f 2 be production functions in a class F satisfying Assumption 6.1.
If Assumption 6.2 holds, then there exists two vectors 
xa and 
xb such that either

f 1(
xa) > f 1(
xb) and f 2(
xa) < f 2(
xb)

or

f 1(
xa) < f 1(
xb) and f 2(
xa) > f 2(
xb)�

This lemma will be used where 
xa and 
xb are part ofX for the same matching market.

6.2 Theorems for identification up to a positive monotonic transformation

Identification proofs in the single-agent maximum score tradition (Matzkin (1993, The-
orem 1)) typically amount mathematically to Lemmas 4.1 and 6.3. Consequently, the
identification proof for each case focuses on an issue that is new to matching games:
embedding the inequalities from Lemma 6.3 in a local production maximization in-
equality, meaning an inequality where each upstream firm switches at most one down-
stream firm at a time. Thus, the proofs look for market characteristics X where the
comparisons in Lemma 6.3 are decisive in rank ordering the production of two larger,

30The assumption that the support of x1 is R, rather than some compact subset of R, is made for conve-
nience. Manski (1988) and Horowitz (1998) showed how to relax the full support assumption for the iden-
tification of single-agent, binary choice models. A continuous product quality could be a candidate for the
continuous upstream product characteristic x1.

31The identification arguments in this paper are not related to the identification-at-infinity arguments
made in the literature on selection and the related work on the special regressor estimator of Lewbel (2000).
Identification based on special regressor arguments might be possible if there are match-specific regressors
with full support and independence from the error terms. Arguments exist to weaken the full support as-
sumptions (Magnac and Maurin (2007)). Special-regressor identification arguments do not lead to tractable
estimators for matching games. The Lewbel single-agent, multinomial choice estimator requires multidi-
mensional density estimation and, therefore, suffers from a data curse of dimensionality in the number of
choices.
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otherwise similar assignments,A1 andA2. I consider group-, match-, and firm-specific
characteristics separately. Identification is Definition 2.1 subject to the lack of a positive
monotonic transformation in Assumption 6.1. I list the theorems in increasing difficulty
of the proofs.

Group-specific characteristics allow the arguments of production functions to move
around more flexibly than in the other cases.

Theorem 6.4. Let all elements of each 
x be group-specific. Then the production function
is identified in the class F .

Match-specific characteristics make the identification proof more complex than be-
fore. The reason is that the equilibrium concept of pairwise stability—Definition 3.2—
involves only one unmatched pair deviating at a time. To show identification, we must
start with Lemma 6.3 and be able to construct local production maximization inequal-
ities, where the coalition characteristics differ by the arguments corresponding to only
one match between an upstream and a downstream firm. Remember, the production
function allows a vector of arguments for each match of an upstream firm. To apply this
and the following theorem, the maximum quota of an upstream firm must be known.

Theorem 6.5. Let all elements of each 
x be match-specific. Also, let there be assignments
A that contain as many groups of matches as the maximum quota of an upstream firm.
Then the production function is identified in the class F .

The theorem requires the matching market to be sufficiently large so that the com-
parisons needed for identification can be formed. The matching market may need to
allow several firms on each side of the market because pairwise stability considers firms
swapping only one partner at a time, while a production function can have as its argu-
ments the characteristics of the matches involving many downstream firms.

An alternative way to identify a production function that involves the characteris-
tics of the matches involving many downstream firms may be to use a solution concept
such as full stability. The full stability solution concept would give inequalities where the
researcher can have groups of downstream firms matched to the same upstream firm
deviating at once. An achievement of this paper is to show identification without rely-
ing on the crutch of a stronger equilibrium concept: only pairwise stability is imposed.
This is important, as full stability is a very strong equilibrium concept. Fully stable out-
comes are less likely to exist if preferences exhibit complementarities across multiple
matches, and believing that a many-to-many outcome is fully stable would require a lot
of communication and coordination for the agents in a decentralized matching mar-
ket. I show that pairwise stability, which requires only communication between one up-
stream and one downstream firm at a time, is enough for point identification in many-
to-many matching games where production functions are not additively separable in
the characteristics of the matches for multiple downstream firms.

Firm-specific characteristics require an additional normalization. As in the example
in Section 2.6, the value of being unmatched will be 0. Informally, identification consid-
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ers the probabilities of assignments where certain firms are unmatched.32 Firms that are
more likely to be unmatched in an assignment are likely to have lower contributions to
production.

Theorem 6.6. Let all the elements of each 
x be firm-specific. Let the value of any firm
remaining unmatched be 0, or f (
xup

u )= f (
xdown
d )= 0 for all u ∈U , d ∈D, and f ∈ F . Fur-

thermore, let there be assignments A that contain as many matched coalitions as three
times the maximum quota of an upstream firm. Then the production function is identi-
fied in the class F .

Data on single or unmatched agents are often available in marriage applications.
Likewise, in an analysis of mergers or business alliances, single firms could be those not
participating in a merger or business alliance. In an auction, bidders who do not win any
items or items that are unsold are often observed.

7. Conclusions

This paper discusses identification of production functions in matching games first
studied by Koopmans and Beckmann (1957), Shapley and Shubik (1972), and Becker
(1973). These matching games allow endogenous transfers that are additively separable
in payoffs. Under a pairwise stable equilibrium, production functions must satisfy in-
equalities that I call local production maximization: if an exchange of one downstream
firm per upstream firm produces a higher production level, than it cannot be individu-
ally rational for some agent. For one-to-one matching games and many-to-many games
with substitutable preferences across multiple downstream firm partners, this condition
is related to social efficiency. For general many-to-many matching games, it is not.

It is not obvious what types of economic parameters are identified from data on only
who matches with whom. The identification theorems cover both derivative-based fea-
tures of production functions and the identification of production functions up to a
positive monotonic transformation. The derivative-based theorems generalize the in-
formal identification results of Becker (1973) to the case of each agent having a vector
of types, many-to-many matching as well as production functions where pairs of in-
puts are not complements or substitutes over their entire supports. One can identify
whether any two inputs are complements or substitutes. Importantly, one can identify
the value of the ratio of complementarities for two pairs of inputs at any point. There-
fore, a researcher can identify the relative importance of different pairs of characteristics
in match production.

The results on the identification of production functions up to a positive monotonic
transformation extend the single-agent work of Matzkin (1993, Theorem 1) to match-
ing games, where agents cannot unilaterally choose partners and so identification re-
quires working with the equilibrium structure of the game. Researchers can distinguish
between f 1(m1�w1)= −(m1 −w1)2, the case of horizontal attributes, and f 2(m1�w1)=
2m1 ·w1, the case of vertical attributes.

32Choo and Siow (2006) estimated a logit-based one-to-one matching model of marriage that requires
data on the fraction of each observable type of man or woman that is single.
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Appendix: Proofs

A.1 Lemma 3.3: Pairwise stability implies local production maximization

Substitute t̃〈u1�d2〉 into (8) and cancel the transfers
∑
d∈Du1 (A)\{d1} t〈u1�d〉 to give

vup(
x(u1�Du1(A))
) + t〈u1�d1〉

≥ vup(
x(u1� (Du1(A)\{d1})∪ {d2}
)) + vdown(
x(u1� {d2})

)
− (
vdown(
x(u2� {d2})

) − t〈u2�d2〉
)
�

Call this no-deviation inequality nd(〈u1� d1〉� 〈u2� d2〉�A� t〈u1�d1〉� t〈u2�d2〉). If π〈u�d〉 is the
new downstream partner of u in the permutation, let ũ(π〈u�d〉) be a function that
gives the original partner of π〈u�d〉, in B1. So 〈ũ(π〈u�d〉)�π〈u�d〉〉 ∈ B1. Now form∑

〈u�d〉∈B1
nd(〈u�d〉� 〈ũ(π〈u�d〉)�π〈u�d〉〉�A� t〈u�d〉� t〈ũ(π〈u�d〉)�π〈u�d〉〉). This gives

∑
〈u�d〉∈B1

vup(
x(u�Du(A))) +
∑

〈u�d〉∈B1

t〈u�d〉

≥
∑

〈u�d〉∈B1

vup(
x(u� (Du(A)\{d})∪ {π〈u�d〉}))

+
∑

〈u�d〉∈B1

{
vdown(
x(u� {π〈u�d〉}))

− (
vdown(
x(ũ(π〈u�d〉)� {π〈u�d〉})) − t〈ũ(π〈u�d〉)�π〈u�d〉〉

)}
�

By the definition of a permutation, each t〈u�d〉 for 〈u�d〉 ∈ B1 appears on both the left and
right sides. The transfers cancel. Similarly, each equilibrium vdown(
x(ũ(π〈u�d〉)� {π〈u�
d〉})) appears on the right side with a negative sign and each deviation vdown(
x(u� {π〈u�
d〉})) appears on the right side with a positive sign. Moving

∑
〈u�d〉∈B1

vdown(
x(ũ(π〈u�d〉)�
{π〈u�d〉})) to the left side and substituting the definition of a production function (Def-
inition 3.1) gives the local production maximization inequality in the lemma.

A.2 Theorem 5.2: Identification of the sign of a cross-partial derivative with
firm-specific covariates

The vector 
x is given in the statement of the theorem. To avoid confusion of the point 
x
with the function 
x(u�Du), I relabel the vector 
x as 
y inside this proof. I will focus on the

case where ∂2f 0(
y)
∂x1 ∂x2

> 0. The proof for the case where ∂2f (
y)
∂x1 ∂x2

< 0 is very similar.

For an arbitrary f 1 ∈ F� f 1 �= f 0, where ∂2f 1(
y)
∂x1 ∂x2

< 0, by Definition 2.1, the definition

of identification of a feature of a function, I must show that there does not exist S1

corresponding to f 1 where Pr(A | X; f 0� S0) = Pr(A | X; f 1� S1) for all (A�X) except
perhaps a set of X of probability 0. By the key Assumption 4.1, a sufficient condition
involves showing that there exists a continuum of market characteristics X with pos-
itive probability and a corresponding matching situation where f 0 and f 1 give differ-
ent implications for a local production maximization inequality of the form in Defi-
nition 3.4. At each of these markets X , there will be a particular assignment A1 and
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another assignment A2 where, by Property 4.1, Pr(A1 | X; f 0� S0) > Pr(A2 | X; f 0� S0)

while Pr(A1 |X; f 1� S1) < Pr(A2 |X; f 1� S1) for any S1 ∈ S . Therefore, the conditions of
Definition 2.1 will be satisfied.

Let me explain the steps of the proof. First, I derive an appropriate local production
maximization inequality and show that the inequality will be reversed if the production
function is f 1 instead of f 0. Second, I show how I can embed the characteristics in the
local production maximization inequality into a matching market with characteristics
X . Third, I show that I can locally vary all the characteristics in X to find a continuum
of markets X with the property of Pr(A1 | X; f 0� S0) > Pr(A2 | X; f 0� S0) while Pr(A1 |
X; f 1� S1) < Pr(A2 |X; f 1� S1) for any S1 ∈ S .

First, I explore deriving a local production maximization inequality. Let ek =
(0� � � � �0�1�0� � � � �0), where the 1 is in the kth position. Without loss of generality, let
x1 be the first position of 
x and let x2 be the second position. One definition of a cross-
partial derivative is the limit of the middle difference quotient:

∂2f (
y)
∂x1 ∂x2

= lim
h→0

f (
y + he1 + he2)− f (
y + he1)− f (
y + he2)+ f (
y)
h2 � (17)

Let ν > 0 be given. By the definition of a limit, we can find h> 0 such that

∣∣∣∣ ∂2f (
x)
∂x1 ∂x2

− f (
y + he1 + he2)− f (
y + he1)− f (
y + he2)+ f (
y)
h2

∣∣∣∣< ν�
As ∂2f 0(
y)

∂x1 ∂x2
> 0, there will be a h0 > 0 such that the numerator of the middle difference

quotient at f = f 0 is positive, or

f 0(
y + h0e1 + h0e2)− f 0(
y + h0e1)− f 0(
y + h0e2)+ f 0(
y) > 0�

or

f 0(
y + h0e1 + h0e2)+ f 0(
y) > f 0(
y + h0e1)+ f 0(
y + h0e2)� (18)

As ∂2f 1(
y)
∂x1 ∂x2

< 0, there exists h1 > 0, where

f 1(
y + h1e1 + h1e2)+ f 1(
y) < f 1(
y + h1e1)+ f 1(
y + h1e2)� (19)

The argument for f 1 is symmetric to the argument for f 0 and is omitted. Set h =
min{h0�h1}. The inequalities (18) and (19) hold for any such h.

Now let me argue that (18), and by a similar argument (19), is a local production
maximization inequality: it satisfies Definition 3.4. To do this I need to formB1 andB2, as
in the definition, and show how a hypothetical swap of downstream firm partners could
produce (18). LetB1 = {〈u1� d1〉� 〈u2� d2〉} andB2 = {〈u1� d2〉� 〈u2� d1〉}, where these indices
refer to arbitrary firms I am creating to show (18) satisfies Definition 3.4. Also, let there
be some Du1 and Du2 of sufficient size to reproduce the number of nonempty elements
(representing unfilled matches) of 
y. We require d1 ∈ Du1 , d2 /∈ Du2 , d2 ∈ Du2 , and d2 /∈
Du1 . Then define 
x(u1�Du1) = 
y + he1 + he2, 
x(u2�Du2) = 
y, 
x(u1� (Du1\{d1}) ∪ {d2}) =
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y + he1, and 
x(u2� (Du2\{d2}) ∪ {d1}) = 
y + he2. With π〈u1� d1〉 = d2 and π〈u2� d2〉 = d1,

inspection shows (18) satisfies Definition 3.4.

To complete the argument that (18) satisfies Definition 3.4 for the case of firm-

specific characteristics, it is necessary to show that this exchange of partners can be ac-

complished with firm-specific characteristics, as the theorem requires that x1 and x2 be

from different firms. As only one upstream firm’s characteristics enter each production

function, it is without loss of generality to say that x2 is a characteristic of a downstream

firm. Let downstream firms d1 and d2 have the same baseline characteristics, except that

firm d1 has h more of characteristic x2 than firm d2: xdown
d1�2

− h = xdown
d2�2

, where xdown
d�2 is

characteristic x2 for firm d ∈D.33 On the left of (18), the match 〈u1� d1〉 puts d1 in either a

direct partnership with an upstream firm u1 with h more x1 than u2 or an indirect part-

nership with another downstream firm d3 ∈Du1 with hmore x1 than the corresponding

d4 ∈Du2 . In notation, either xup
u1�1

− h= xup
u2�1

or xdown
d3�1

− h= xdown
d4�1

.

The matches 〈u1� d2〉 and 〈u2� d1〉 form on the right side of (18). Firm d1, with hmore

of x2, is transferred from the set of matches (u1�Du1), with h more x1, to the set of

matches (u2�Du2). Likewise, d2, without any more x2, matches to u1 and its downstream

firm partners, which together have hmore x1 than the matches involving u2. The impor-

tant requirement that is satisfied is that each move switches the characteristics of only

the firm that is actually switching. Therefore, (18) satisfies Definition 3.4 for the case of

firm-specific characteristics.

The second step of the proof is that I will argue that I can embed B1 and B2 in an

entire matching market. Let B3 be a larger set of matches that includes the matches

corresponding to the downstream firms inDu1\{d1} andDu2\{d2}. The exact choice ofB3

plays no role in the proof, other than to ensure Du1\{d1} and Du2\{d2} are large enough

given the number of nonempty elements (representing filled quota slots) in 
y. Then set

A1 = B1 ∪ B3 and A2 = B2 ∪ B3. Let there be some collection X of characteristics as in

(7). The choice ofX plays no role in the proof, except that characteristics itemized above

must be a subset ofX .

Property 4.1 and (18) imply Pr(A1 |X; f 0� S0) > Pr(A2 |X; f 0� S0), while Property 4.1

and (19) imply Pr(A1 |X; f 1� S1) < Pr(A2 |X; f 1� S1) for any S1 ∈ S .

The third step of the proof is to vary all the arguments in X to show that a contin-

uum of market characteristics give different local production maximization inequalities

for f 0 and f 1. By Assumption 5.1, X has support equal to the product of the marginal

supports of the scalar elements of the vectors that comprise X . Each f is continuous by

Assumption 5.1, soX can be varied locally and identification can be achieved over a set

of markets with positive probability.

33If x2 is the second characteristic of 
x, I then say it is also the second characteristic of 
xdown
d , xdown

d�2 . This
is done for clarity: it keeps “2” referring to the same variable whether I am referring to it as an element of
the entire vector of production function arguments 
x or as an element of the vector of characteristics of
firm d, 
xdown

d .
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A.3 Theorem 5.3: Identification of the ratio of two cross-partial derivatives with
firm-specific covariates

We are given a point 
y (relabeled from 
x in the statement of the theorem) and there

is an arbitrary f 1 ∈ F , where ∂2f 0(
y)
∂x1 ∂x2

/∂
2f 0(
y)
∂x3 ∂x4

�= ∂2f 1(
y)
∂x1 ∂x2

/∂
2f 1(
y)
∂x3 ∂x4

. The goal in broad gener-

ality is the same as the proof of Theorem 5.2: show there exists a continuum of X
and two assignments A1 and A2, where Pr(A1 | X; f 0� S0) > Pr(A2 | X; f 0� S0), while
Pr(A1 |X; f 1� S1) < Pr(A2 |X; f 1� S1) for any S1 ∈ S . The proof is more challenging than
the proof of Theorem 5.2 because now we are trying to identify the value of some feature

of f 0, here ∂2f 0(
y)
∂x1 ∂x2

/∂
2f 0(
y)
∂x3 ∂x4

, rather than just the sign of a cross-partial derivative, as before.

I will show that the term ∂2f 0(
y)
∂x1 ∂x2

/∂
2f 0(
y)
∂x1 ∂x3

is identified, where x1 is the same character-

istic in the numerator and the denominator. Then, by the Young–Clairaut–Schwarz the-

orem, arbitrary ratios ∂2f 0(
y)
∂x1 ∂x2

/∂
2f 0(
y)
∂x3 ∂x4

can be identified by comparing, say, ∂
2f 0(
y)
∂x1 ∂x2

/∂
2f 0(
y)
∂x1 ∂x3

to ∂2f 0(
y)
∂x3 ∂x4

/∂
2f 0(
y)
∂x3 ∂x1

. Cross-partial derivatives are symmetric if the second-partial deriva-
tives are continuous, which they are because Assumption 6.1 states that f is three-times
differentiable.

By Theorem 5.2, we know the signs of ∂
2f 0(
y)
∂x1 ∂x2

and ∂2f 0(
y)
∂x1 ∂x3

if they are nonzero, as the

current theorem requires. If f 1 implies different signs for ∂
2f 1(
y)
∂x1 ∂x2

and ∂2f 1(
y)
∂x1 ∂x3

, then by The-

orem 5.2, we can distinguish f 0 and f 1. So we can restrict attention to the case where the

signs of ∂
2f 0(
y)
∂x1 ∂x2

and ∂2f 1(
y)
∂x1 ∂x2

as well as ∂2f 0(
y)
∂x1 ∂x3

and ∂2f 1(
y)
∂x1 ∂x3

are the same. I will first consider

the case where ∂2f (
y)
∂x1 ∂x2

> 0 and ∂2f (
y)
∂x1 ∂x3

> 0 for f ∈ {f 0� f 1}. The other cases are discussed at
the end of the proof.

The outline of the proof follows. The most novel step comes first: I find a key inequal-
ity that arises from the numerator of the middle-difference quotient, (17), and that has
a different direction for f 0 and f 1. For example, this can be seen as a situation where
f 0 would predict sorting on characteristics x1 and x2, while f 1 would predict sorting on
characteristics x1 and x3 when sorting on both pairs simultaneously is physically impos-
sible. The second step is that I show that this inequality is a local production maximiza-
tion inequality. Some final steps follow arguments in the proof of Theorem 5.2 and are
omitted for brevity.

Let h1�2 be the limit argument from the middle-difference quotient, (17), for ∂2f (
y)
∂x1 ∂x2

.

Likewise, let h1�3 be the limit argument for ∂2f (
y)
∂x1 ∂x3

. Consider the case ∂2f 0(
y)
∂x1 ∂x2

/∂
2f 0(
y)
∂x1 ∂x3

>
∂2f 1(
y)
∂x1 ∂x2

/∂
2f 1(
y)
∂x1 ∂x3

and let {h1�2�n}n∈N be a sequence that converges to 0. Let {h1�3�n}n∈N be a
sequence

h1�3�n = h1�2�n

√
1
2

(
∂2f 0(
y)
∂x1 ∂x2

/∂2f 0(
y)
∂x1 ∂x3

+ ∂2f 1(
y)
∂x1 ∂x2

/∂2f 1(
y)
∂x1 ∂x3

)
� (20)

{h1�3�n}n∈N converges to 0 and

h2
1�3�n

h2
1�2�n

= 1
2

(
∂2f 0(
y)
∂x1 ∂x2

/∂2f 0(
y)
∂x1 ∂x3

+ ∂2f 1(
y)
∂x1 ∂x2

/∂2f 1(
y)
∂x1 ∂x3

)
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is the mean of the two ratios of cross-partial derivatives for all n ∈ N. This choice of h1�3�n

ensures

∂2f 0(
y)
∂x1 ∂x2

/∂2f 0(
y)
∂x1 ∂x3

>
h2

1�3�n

h2
1�2�n

>
∂2f 1(
y)
∂x1 ∂x2

/∂2f 1(
y)
∂x1 ∂x3

(21)

for all n ∈ N.
Let τ = ∂2f 0(
y)

∂x1∂x2
/∂

2f 0(
y)
∂x1 ∂x3

− ∂2f 1(
y)
∂x1 ∂x2

/∂
2f 1(
y)
∂x1 ∂x3

and

Υ(h1�2�h1�3; f )

= f (
y + h1�2e1 + h1�2e2)− f (
y + h1�2e1)− f (
y + h1�2e2)+ f (
y)
h2

1�2

(22)

×
(
f (
y + h1�3e1 + h1�3e3)− f (
y + h1�3e1)− f (
y + h1�3e3)+ f (
y)

h2
1�3

)−1

for f ∈ F . By a definition of a cross-partial derivative, (17), the ratio Υ(h1�2�n�h1�3�n; f )
converges to ∂2f (
y)

∂x1 ∂x2
/ ∂

2f (
y)
∂x1 ∂x3

for f ∈ {f 0� f 1} as n → ∞ and (h1�2�n�h1�3�n) → (0�0). Then

there exists some n1 ∈ N, where, for all n ≥ n1, n ∈ N, |Υ(h1�2�n�h1�3�n; f 0) − ∂2f 0(
y)
∂x1 ∂x2

/
∂2f 0(
y)
∂x1 ∂x3

| < τ
3 and |Υ(h1�2�n�h1�3�n; f 1) − ∂2f 1(
y)

∂x1 ∂x2
/∂

2f 1(
y)
∂x1 ∂x3

| < τ
3 . The choice of distance τ

3 en-
sures that

Υ(h1�2�n�h1�3�n; f 0) >
h2

1�3�n

h2
1�2�n

> Υ(h1�2�n�h1�3�n; f 1) (23)

for all n≥ n1, n ∈ N. Define


(h1�2�h1�3; f )
= f (
y + h1�2e1 + h1�2e2)− f (
y + h1�2e1)− f (
y + h1�2e2)+ f (
y)

− (f (
y + h1�3e1 + h1�3e3)− f (
y + h1�3e1)− f (
y + h1�3e3)+ f (
y))

for f ∈ F . Choose (h1�2�h1�3) = (h1�2�n�h1�3�n). Substituting the definition of Υ(h1�2�n�

h1�3�n; f ) into (23) and resulting algebra shows that, at (h1�2�h1�3), the ratios h2
1�3�n/h

2
1�2�n

cancel in all terms and

f 0(
y + h1�2e1 + h1�2e2)− f 0(
y + h1�2e1)− f 0(
y + h1�2e2)+ f 0(
y)
f 0(
y + h1�3e1 + h1�3e3)− f 0(
y + h1�3e1)− f 0(
y + h1�3e3)+ f 0(
y)

(24)

> 1>
f 1(
y + h1�2e1 + h1�2e2)− f 1(
y + h1�2e1)− f 1(
y + h1�2e2)+ f 1(
y)
f 1(
y + h1�3e1 + h1�3e3)− f 1(
y + h1�3e1)− f 1(
y + h1�3e3)+ f 1(
y)�

and so


(h1�2�h1�3; f 0) > 0>
(h1�2�h1�3; f 1)�
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At this value (h1�2�h1�3), f 0 and f 1 have different signs for a key term 
(h1�2�h1�3; f ).
The same style of arguments and the same choice of h1�3�n, (20), will apply to the case
∂2f 0(
y)
∂x1 ∂x2

/∂
2f 0(
y)
∂x1 ∂x3

< ∂2f 1(
y)
∂x1 ∂x2

/∂
2f 1(
y)
∂x1 ∂x3

. Only a few inequalities are reversed.

Now I will argue that 
(h1�2�h1�3; f ) can be used to form a local production max-

imization inequality. Rearrange the inequality 
(h1�2�h1�3; f ) > 0 so that all signs are

positive:

f (
y + h1�2e1 + h1�2e2)+ f (
y + h1�3e1)+ f (
y + h1�3e3)+ f (
y)
(25)

> f(
y + h1�3e1 + h1�3e3)+ f (
y + h1�2e1)+ f (
y + h1�2e2)+ f (
y)�

The inequality (25) satisfies Definition 3.4 for some choice of B1 and B2. Let B1 =
{〈u1� d1〉� 〈u2� d2〉� 〈u3� d3〉� 〈u4� d4〉} and B2 = {〈u1� d4〉� 〈u2� d3〉� 〈u3� d2〉� 〈u4� d1〉}, where

the permutation π is implied by the definitions of B1 and B2. Also, let d1 ∈ Du1 ,

d2 ∈ Du2 , d3 ∈ Du3 , and d4 ∈ Du4 . Let 
x(u1�Du1) = 
y + h1�2e1 + h1�2e2, 
x(u2�D2) =

y + h1�3e1, 
x(u3�D3) = 
y + h1�3e3, 
x(u4�D4) = 
y, 
x(u1� (Du1\{d1}) ∪ {d4}) = 
y + h1�2e1,


x(u2� (Du2\{d2}) ∪ {d3}) = 
y + h1�3e1 + h1�3e3, 
x(u3� {Du3\{d3}} ∪ {d2}) = 
y, and 
x(u4�

(Du4\{d4}) ∪ {d1}) = 
y + h1�2e2. Either xup
u1�1

− h1�2 = x
up
u4�1

or xdown
m1�1

− h1�2 = xdown
m4�1

for

two firms m1 ∈ Du1 , m1 �= d1, and m4 ∈ Du4 , m4 �= d4; xdown
d3�2

− h1�3 = xdown
d2�2

; and either

x
up
u2�1

−h1�3 = xup
u3�1

or xdown
m2�1

−h1�3 = xdown
m3�1

for two firmsm2 ∈Du2 ,m2 �= d2, andm3 ∈Du3 ,

m3 �= d3. By inspection, it can be seen that each match in B1 exchanges a downstream

firm partner for a match in B2. Meanwhile, each set of arguments 
x(u�Du) on the right

can be formed by an exchange of a single downstream firm’s characteristics from a set of

arguments on the left. Therefore, this construction satisfies Definition 3.4 for the case of

firm-specific characteristics.

As in the proof of Theorem 5.2, I can embedB1 andB2 into a larger matching market,

constructA1,A2, andX , apply the rank order property, and then varyX in a continuum

to find a positive probability of markets where f 0 and f 1 give different predictions by the

rank order property.

Recall that by Theorem 5.2, we can focus on cases where the signs of the cross-

partials are the same for f 0 and f 1. Before we restricted attention to the case ∂2f (
y)
∂x1 ∂x2

> 0,
∂2f (
y)
∂x1 ∂x3

> 0 and ∂2f (
y)
∂x1 ∂x2

> ∂2f (
y)
∂x1 ∂x3

for f ∈ {f 0� f 1}. ∂2f (
y)
∂x1 ∂x2

> ∂2f (
y)
∂x1 ∂x3

is without loss of gener-

ality,34 but ∂2f (
y)
∂x1 ∂x2

> 0 and ∂2f (
y)
∂x1 ∂x3

> 0 for f ∈ {f 0� f 1} are conditions with some loss of

generality. Now we need to argue that the above arguments go through for the other

three cases: ∂
2f (
y)
∂x1 ∂x2

< 0 and ∂2f (
y)
∂x1 ∂x3

> 0, ∂
2f (
y)
∂x1 ∂x2

> 0 and ∂2f (
y)
∂x1 ∂x3

< 0, as well as ∂2f (
y)
∂x1 ∂x2

< 0 and
∂2f (
y)
∂x1 ∂x3

< 0. This is simple: in some of these new cases, key inequalities may reverse di-

rection, but as ∂2f 0(
y)
∂x1 ∂x2

/∂
2f 0(
y)
∂x1 ∂x3

�= ∂2f 1(
y)
∂x1 ∂x2

/∂
2f 1(
y)
∂x1 ∂x3

for all cases, the same arguments as above

34In part, there is no loss in generality because identifying ∂2f 0(
y)
∂x1 ∂x2

/ ∂
2f 0(
y)
∂x1 ∂x3

is equivalent to identifying its

inverse, ∂
2f 0(
y)
∂x1 ∂x3

/ ∂
2f 0(
y)
∂x1 ∂x2

.
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will show (h1�2�h1�3) can be chosen to lie in between ∂2f 0(
y)
∂x1 ∂x2

/∂
2f 0(
y)
∂x1 ∂x3

and ∂2f 1(
y)
∂x1 ∂x2

/∂
2f 1(
y)
∂x1 ∂x3

.

Once this is done, the above can all be repeated without much change.35

A.4 Theorem 5.4: Identification of the sign of a second own partial derivative with
match-specific covariates

For conciseness, certain steps of the proof will be replaced with references to similar
arguments in Theorem 5.2. Some notation, such as 
y, is also explained in Theorem 5.2.
Let x in the statement of the theorem be x1 inside the proof.

One definition of a second derivative is

∂2f (
y)
∂x2

1

= lim
h→0

f (
y + 2he1)− 2f (
y + he1)+ f (
y)
h2 � (26)

where, as in the proof of Theorem 5.2, e1 = (1�0�0� � � � �0) is a vector of 0’s except in

the first element. Because both ∂2f 0(
y)
∂x2

1
and ∂2f 1(
y)

∂x2
1

are limits, there will be some h =
min{h0�h1}, where h0 and h1 are the respective limit arguments for f 0 and f 1, where
both

f 0(
y + 2he1)+ f 0(
y) > 2f 0(
y + he1) (27)

and

f 1(
y + 2he1)+ f 1(
y) < 2f 1(
y + he1) (28)

hold.
Now I will argue that (27) and, by the same argument, (28) are local produc-

tion maximization equations, Definition 3.4. Let B1 = {〈u1� d1〉� 〈u2� d2〉} and B2 =
{〈u1� d2〉� 〈u2� d1〉}. Also let there be sufficiently large (to handle 
y) sets Du1 and Du2 ,
where d1 ∈ Du1 , d1 /∈ Du2 , d2 ∈ Du2 , and d2 /∈ Du1 . Also define 
x(u1�Du1) = 
y + 2he1,

x(u2�Du2)= 
y, 
x(u1� (Du1\{d1})∪ {d2})= 
y + he1, and 
x(u2� (Du2\{d2})∪ {d1})= 
y + he1.
Let the first characteristics for matches satisfy xmatch

〈u1�d1〉�1 − h = xmatch
〈u2�d1〉�1 = xmatch

〈u1�d2〉�1 and

xmatch
〈u1�d1〉�1 − 2h = xmatch

〈u2�d2〉�1. With π〈u1� d1〉 = d2 and π〈u2� d2〉 = d1, inspection shows (18)
satisfies Definition 3.4 for the case of match-specific characteristics.

The embedding of B1 and B2 in a matching market and finding a continuum of mar-
ketsX with the key property both follow similar arguments in the proof of Theorem 5.2.

35If ∂2f (
y)
∂x1 ∂x2

/ ∂
2f (
y)
∂x1 ∂x3

< 0 for f ∈ {f 0� f 1}, then (20) will involve the square root of a negative number. To

fix this, let (20) involve the absolute values of ∂2f (
y)
∂x1 ∂x2

/ ∂
2f (
y)
∂x1 ∂x3

for f ∈ {f 0� f 1}. For the case ∂2f 0(
y)
∂x1 ∂x2

/ ∂
2f 0(
y)
∂x1 ∂x3

>

∂2f 1(
y)
∂x1 ∂x2

/ ∂
2f 1(
y)
∂x1 ∂x3

, (30) will become ∂2f 0(
y)
∂x1 ∂x2

/ ∂
2f 0(
y)
∂x1 ∂x3

>− h2
1�3�n

h2
1�2�n

> ∂2f 1(
y)
∂x1 ∂x2

/ ∂
2f 1(
y)
∂x1 ∂x3

. Following the steps of the algebra

in the earlier argument, the 1 in (24) will be a −1 and the pair of inequalities in (24) will reverse directions
once both sides are multiplied by the −1. A different local production maximization inequality will arise;
otherwise the argument is similar to the earlier argument.
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A.5 Theorem 5.5: Identification of the ratio of two second own partial derivatives with
match-specific covariates

We are given a point 
y (relabeled from 
x in the statement of the theorem) and there

is an arbitrary f 1 ∈ F , where ∂2f 0(
y)
∂x2

1
/∂

2f 0(
y)
∂x2

2
�= ∂2f 1(
y)

∂x2
1
/∂

2f 1(
y)
∂x2

2
. I consider the case where

∂2f (
y)
∂x2

1
> 0 and ∂2f (
y)

∂x2
2
> 0 for f ∈ {f 0� f 1}. The other cases follow similarly.

Let h1 be the index for the approximation term on the right side of (26) for ∂2f (
y)
∂x2

1

and let h2 be the index for ∂2f (
y)
∂x2

2
. Consider the case ∂2f 0(
y)

∂x2
1
/∂

2f 0(
y)
∂x2

2
> ∂2f 1(
y)

∂x2
1
/∂

2f 1(
y)
∂x2

2
and

let {h1�n}n∈N be a sequence that converges to 0. Let {h2�n}n∈N be a sequence

h2�n = h1�n

√
1
2

(
∂2f 0(
y)
∂x2

1

/∂2f 0(
y)
∂x2

2

+ ∂2f 1(
y)
∂x2

1

/∂2f 1(
y)
∂x2

2

)
� (29)

{h2�n}n∈N converges to 0 and

h2
2�n

h2
1�n

= 1
2

(
∂2f 0(
y)
∂x2

1

/∂2f 0(
y)
∂x2

2

+ ∂2f 1(
y)
∂x2

1

/∂2f 1(
y)
∂x2

2

)

is the mean of the two ratios of second partial derivatives for all n ∈ N. This choice of h2�n
ensures

∂2f 0(
y)
∂x2

1

/∂2f 0(
y)
∂x2

2

>
h2

2�n

h2
1�n

>
∂2f 1(
y)
∂x2

1

/∂2f 1(
y)
∂x2

2

(30)

for all n ∈ N.
Let τ= ∂2f 0(
y)

∂x2
1
/∂

2f 0(
y)
∂x2

2
− ∂2f 1(
y)

∂x2
1
/∂

2f 1(
y)
∂x2

2
and

Υ(h1�h2; f ) = f (
y + 2h1e1)− 2f (
y + h1e1)+ f (
y)
h2

1
(31)

×
(
f (
y + 2h2e2)− 2f (
y + h2e2)+ f (
y)

h2
2

)−1

for f ∈ F . By the definition of a second partial derivative, (26), the ratio Υ(h1�h2; f )
converges to ∂2f (
y)

∂x2
1
/∂

2f (
y)
∂x2

2
for f ∈ {f 0� f 1} as n→ ∞ and (h1�n�h2�n)→ (0�0). Then there

exists some n1 ∈ N, where, for all n ≥ n1, n ∈ N, |Υ(h1�h2; f 0) − ∂2f 0(
y)
∂x2

1
/∂

2f 0(
y)
∂x2

2
| < τ

3 and

|Υ(h1�h2; f 1)− ∂2f 1(
y)
∂x2

1
/∂

2f 1(
y)
∂x2

2
|< τ

3 . The choice of distance τ
3 ensures that

Υ(h1�h2; f 0) >
h2

2�n

h2
1�n

> Υ(h1�h2; f 1) (32)

for all n≥ n1, n ∈ N. Define


(h1�h2; f ) = f (
y + 2h1e1)− 2f (
y + h1e1)+ f (
y)
− (f (
y + 2h2e2)− 2f (
y + h2e2)+ f (
y))
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for f ∈ F . Choose (h1�h2) = (h1�n�h2�n) for n ≥ n1. Substituting the definition of
Υ(h1�h2; f ) into (32) and resulting algebra shows that at (h1�h2), the ratios h2

2�n/h
2
1�n

cancel in all terms and

f 0(
y + 2h1e1)− 2f 0(
y + h1e1)+ f 0(
y)
f 0(
y + 2h2e2)− 2f 0(
y + h2e2)+ f 0(
y)

> 1>
f 1(
y + 2h1e1)− 2f 1(
y + h1e1)+ f 1(
y)
f 1(
y + 2h2e2)− 2f 1(
y + h2e2)+ f 1(
y)�

and so


(h1�h2; f 0) > 0>
(h1�h2; f 1)�

At this value (h1�2�h1�3), f 0 and f 1 have different signs for a key term 
(h1�h2; f 0). The

same style of arguments will apply to the case ∂2f 0(
y)
∂x2

1
/∂

2f 0(
y)
∂x2

2
< ∂2f 1(
y)

∂x2
1
/∂

2f 1(
y)
∂x2

2
. Only a few

inequalities are reversed.
Now we can rearrange the inequality 
(h1�h2; f 0) > 0, giving

f (
y + 2h1e1)+ 2f (
y + h2e2)+ f (
y) > f(
y + 2h2e2)+ 2f (
y + h1e1)+ f (
y)� (33)

We can show that this is a local production maximization inequality, Definition 3.4,
for some choice of B1 and B2. Let B1 = {〈u1� d1〉� 〈u2� d2〉� 〈u3� d3〉� 〈u4� d4〉} and B2 =
{〈u1� d4〉� 〈u2� d1〉� 〈u3� d2〉� 〈u4� d3〉}, where the permutation π is implied by the defini-
tions of B1 and B2. Also, let d1 ∈Du1 , d2 ∈Du2 , d3 ∈Du3 , and d4 ∈Du4 . Let 
x(u1�Du1) =

y + 2h1e1, 
x(u2�Du2)= 
y +h2e2, 
x(u3�Du3)= 
y +h2e2, 
x(u4�Du4)= 
y, 
x(u1� (Du1\{d1})∪
{d4})= 
y + h1e1, 
x(u2� (Du2\{d2})∪ {d1})= 
y + h1e1, 
x(u3� {Du3\{d3}} ∪ {d2})= 
y + 2h2e2,
and 
x(u4� (Du4\{d4}) ∪ {d3}) = 
y. Let xmatch

〈u1�d1〉�1 − 2h1 = xmatch
〈u4�d4〉�1 = xmatch

〈u3�d2〉�1 = xmatch
〈u2�d2〉�1 =

xmatch
〈u3�d3〉�1 = xmatch

〈u4�d3〉�1; xmatch
〈u1�d1〉�1 − h1 = xmatch

〈u2�d1〉�1 = xmatch
〈u1�d4〉�1; xmatch

〈u3�d2〉�2 − 2h2 = xmatch
〈u1�d1〉�2 =

xmatch
〈u2�d1〉�2 = xmatch

〈u4�d3〉�2 = xmatch
〈u4�d4〉�2 = xmatch

〈u1�d4〉�2; and xmatch
〈u3�d2〉�2 − h2 = xmatch

〈u2�d2〉�2 = xmatch
〈u3�d3〉�2. By

inspection, it can be seen that each match in B1 exchanges a downstream firm partner
for a match in B2. Meanwhile, each set of arguments on the right side can be formed by
replacing the characteristics associated with a single match in a set of arguments on the
left side. Therefore, Definition 3.4 is satisfied.

The remainder of the proof follows arguments in previous proofs and so is omitted.

A.6 Lemma 6.3: Continuous characteristics for the identification of production
functions up to positive monotonic transformations

Without loss of generality, the goal of the proof is to show that the set

W 1 = {(
xa� 
xb) | f 1(
xa) > f 1(
xb) and f 2(
xa) < f 2(
xb)}
is nonempty. Let 
x= cat((x1)� 
x−1).

First we want to show that, again without loss of generality,

W 2 = {(
xa� 
xb) | f 1(
xa)≥ f 1(
xb) and f 2(
xa) < f 2(
xb)}
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is nonempty. Assume not. Then f 1 and f 2 induce the same ordering, or preference rela-
tion in utility theory. The “only if” direction of Theorem 1.2 in Jehle and Reny (2000)
shows that there must exist some positive, strictly monotonic function m such that
f 1(
xa)=m ◦ f 2(
xa) over the range of values taken on by f 2. As this contradicts Assump-
tion 6.1,W 2 must be nonempty.

We have shownW 2 is nonempty. Take a point (
xa� 
xb) ∈W 2. Then add δ1 > 0 to the x1
element of 
xa. Because f 1 is strictly increasing in x1, f 1(
xa + e1δ1) > f

1(
xb), where e1 =
(1�0�0� � � � �0) is a vector of length equal to the length of 
xa. Because f 2 is continuous,
there exists a δ2 > 0, where f 2(
xa − e1δ2) < f

2(
xb) is preserved. Let δ= min{δ1� δ2}. The
points 
xa + e1δ and 
xb satisfy the requirements of the lemma.

A.7 Theorem 6.4: Identification up to a positive monotonic transformation,
group characteristics

Let f 0� f 1 ∈ F , where f 0 is the production function to be identified and f 1 is an alter-
native where f 1(
x) �= m ◦ f 0(
x) for all 
x for any positive monotonic function m. The
goal is to show that there exists a continuum of X , and two assignments A1 and A2,
where Pr(A1 |X; f 0� S0) > Pr(A2 |X; f 0� S0) while Pr(A1 |X; f 1� S1) < Pr(A2 |X; f 1� S1)

for any S1 ∈ S .
Lemma 6.3 produces 
x1 and 
x2 such that f 0(
x1) > f

0(
x2) and f 1(
x1) < f
1(
x2) or

f 0(
x1) < f 0(
x2) and f 1(
x1) > f 1(
x2). Focus on the first case. An inequality such as
f 0(
x1) > f

0(
x2) considers a group of matches centered around an upstream firm on the
left and another group of matches centered around an upstream firm on the right. This
is not a local production maximization inequality (Definition 3.4), which would require
at least two groups, each centered on an upstream firm, on both the left and the right.

Consider a third set of characteristics, 
x3. The exact value of 
x3 will not matter for the
case of group-specific characteristics. Add its production to both sides of the inequality
f (
x1) > f(
x2) to give

f (
x1)+ f (
x3) > f(
x2)+ f (
x3)� (34)

This inequality is satisfied for f = f 0; the opposite direction is satisfied for f = f 1.
I will now argue that this is a local production maximization inequality, Defini-

tion 3.4. Let B1 = {〈u1� d1〉� 〈u2� d2〉} and B2 = {〈u1� d2〉� 〈u2� d1〉}. Also let there be suffi-
ciently large (to handle 
y) sets Du1 and Du2 , where d1 ∈ Du1 , d1 /∈ Du2 , d2 ∈ Du2 , and
d2 /∈Du1 . Also define 
x(u1�Du1)= 
x1, 
x(u2�Du2)= 
x3, 
x(u1� (Du1\{d1}) ∪ {d2})= 
x2, and

x(u2� (Du2\{d2}) ∪ {d1}) = 
x3. With π〈u1� d1〉 = d2 and π〈u2� d2〉 = d1, inspection shows
(34) satisfies Definition 3.4 for the case of match-specific characteristics.

The remainder of the proof uses quite similar arguments to those in Theorem 5.2.
The four groups are embedded into a larger matching market. One can show that there
is a continuum of markets X with similar properties. The main change to the argument
is to allow for discrete covariates. I condition on the discrete elements of X at all steps
and vary only the continuous elements to show that the set of markets X has positive
probability. The case with f 0(
x1) < f

0(
x2) and f 1(
x1) > f
1(
x2) is similar: just reverse the

local production maximization inequalities.
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A.8 Theorem 6.5: Identification up to a positive monotonic transformation, match
characteristics

Let f 0� f 1 ∈ F , where f 0 is the production function to be identified and f 1 is an al-
ternative where f 1(
x) �= m ◦ f 0(
x) for all 
x and for any positive monotonic function
m. Lemma 6.3 produces 
x1 and 
x2 such that f 0(
x1) > f

0(
x2) and f 1(
x1) < f
1(
x2) or

f 0(
x1) < f
0(
x2) and f 1(
x1) > f

1(
x2). Focus on the first case. We will now construct a
local production maximization inequality.

For match-specific characteristics, 
x(u�Du) = cat((xmatch
〈u�d1〉�1� � � � � x

match
〈u�d1〉�K)� � � � �

(xmatch
〈u�dm〉�1� � � � � x

match
〈u�dm〉�K)) for Du = {d1� � � � � dm}, where m = |Du| is the number of down-

stream firms matched to upstream firm u and K is the number of scalar character-
istics for each match. An alternative representation of 
x(u�Du) is as a tuple of vec-
tors rather than a concatenation of vectors (one long vector). For this proof only, let

x1 = (
xmatch

〈1�1〉 � � � � � 
xmatch
〈1�m〉 ), where each 
xmatch

〈1�d〉 for d = 1� � � � �m is itself potentially a vector.

Likewise, let 
x2 = (
xmatch
〈2�1〉 � � � � � 
xmatch

〈2�n〉 ), where upstream firm 2 has n matches, each with
a vector of characteristics. To further simplify notation, expand the shorter of the two
characteristics collections 
x1 and 
x2 to have the same number of component matches
by adding empty sets to the production vector. Call the common number of component
matches h= max{m�n}. Ifm= 2 and n= 3, 
x1 is expanded to be (
xmatch

〈1�1〉 � 
xmatch
〈1�2〉 �∅).

Starting with an inequality f (
x1) > f(
x2), we can construct a series { 
wc}h−1
c=1 of coali-

tion characteristics that add the same terms to both sides of f (
x1) > f(
x2) to create a
local production maximization inequality of the form

f (
x1)+
h−1∑
c=1

f ( 
wc) > f(
x2)+
h−1∑
c=1

f ( 
wc)� (35)

This inequality will be satisfied for f = f 0, and will be satisfied with the less than (<)
direction for f = f 1.

A local production maximization inequality must satisfy Definition 3.4. The main
challenge is that each group characteristic on the right side of the inequality must dif-
fer in only one vector of match-specific characteristics from a characteristics vector on
the left side. This is because the equilibrium concept of pairwise stability does not allow
more than one downstream firm to switch for each upstream firm. To show that (35) is
indeed a local production maximization inequality, we need to show that we can pick
{ 
wc}h−1

c=1 so that each term on the right side is only one match-specific characteristic vec-
tor separate from a term on the left side. The general construction of a 
wc for c ≤ h− 1
is


wc = (
xmatch
〈1�1〉 � � � � � 
xmatch

〈1�h−c〉� 
xmatch
〈2�1〉 � � � � � 
xmatch

〈2�c〉
)
�

The construction is motivated as follows. From Definition 3.4, let B1 = {〈u0� d0〉� 〈u1� d1〉�
� � � � 〈uh−1� dh−1〉} and B2 = {〈u0� d1〉� 〈u1� d2〉� � � � � 〈uh−1� d0〉}. The group centered around
upstream firm u0, with characteristics 
x(u0�Du0) = 
x1, replaces one downstream firm,
d0 ∈ Du0 , with a new firm, d1 ∈ Du1 . A valid new match-specific value for u0’s new
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partner d1 is, by intentional choice, 
x(u0� {d1}) = 
xmatch
〈2�1〉 , the first vector in 
x2.36 This

results in a group of matches with characteristics 
w1 = 
x(u0� (Du0\{d0}) ∪ {d1}) =
(
xmatch

〈1�1〉 � � � � � 
xmatch
〈1�h−1〉� 
xmatch

〈2�1〉 ) appearing on the right side of (35). Recall that we need to

add the same terms on the left and right sides to move from f (
x1) > f(
x2) to (35). So
we add f ( 
w1) = f (
x(u1�Du1)) on the left side. The group centered around upstream
firm u1 replaces one downstream firm, d1 ∈ Du1 , with d2 ∈ Du2 . On the right side,

w2 = 
x(u1� (Du1\{d1}) ∪ {d2}) = (
xmatch

〈1�1〉 � � � � � 
xmatch
〈1�h−2〉� 
xmatch

〈2�1〉 � 
xmatch
〈2�2〉 ). As before, f ( 
w2) =

f (
x(u2�Du2)) appears on the left side as well.
This iterative process truncates. A hypothetical 
wh equals 
x2, one of the original two

vectors from the beginning of the proof. Also, 
x1 equals a hypothetical 
w0, the beginning
of the iterative process. The above construction shows that each 
x(uc�Duc )= 
wc on the
left side exchanges one downstream firm dc to yield 
x(uc� (Duc\{dc})∪ {dc+1})= 
wc+1 on
the right side. By inspection, each collection of characteristics 
x(uc� (Duc\{dc})∪ {dc+1})
is different from 
x(uc�Duc ) by the characteristics of one match: 
x(uc� {dc+1}) = 
xmatch

〈2�c+1〉
instead of 
x(uc� {dc})= 
xmatch

〈1�h−c〉. Therefore, (35) is a valid local production maximization
inequality according to Definition 3.4.

The remainder of the proof follows arguments similar to those in previous proofs.

A.9 Theorem 6.6: Identification up to a positive monotonic transformation, firm
characteristics

Let f 0� f 1 ∈ F , where f 0 is the production function to be identified and f 1 is an al-
ternative where f 1(
x) �= m ◦ f 0(
x) for all 
x and for any positive monotonic function
m. Lemma 6.3 produces 
x1 and 
x2 such that f 0(
x1) > f

0(
x2) and f 1(
x1) < f
1(
x2) or

f 0(
x1) < f
0(
x2) and f 1(
x1) > f

1(
x2). Focus on the first case. We will now construct a
local production maximization inequality.

We need to add the same terms to both sides of the inequality and then argue that
the resulting inequality is a local production maximization inequality, where each coali-
tion on the left side is different from a coalition on the right side only in the identity of
one downstream firm. The challenge with firm-specific characteristics is that the char-
acteristics of firms remain the same on both sides of the inequality, and different char-
acteristics are in 
x1 and 
x2.

The characteristics are firm-specific: 
x(u�Du) = cat((xup
u�1� � � � � x

up
u�Kup)� (xdown

d1�1
� � � � �

xdown
d1�Kdown)� � � � � (x

down
dl�1

� � � � � xdown
dl�Kdown)), where u is matched to l downstream firms, each

upstream firm hasKup characteristics, and each downstream firm hasKdown character-
istics.

In this proof only, I will use the notation f (
x1) = f (
xup
1 � 
xdo�1

1 � � � � � 
xdo�1
l ) to repre-

sent the production of a group of matches with firm characteristics 
x1. Here, 
xup
1 =

(x
up
1�1� � � � � x

up
1�Ku), 
xdo�1

d = (xdo
d�1� � � � � x

do
d�Kd

) and “do” is simply short for “downstream firm.”

Each argument of f (
xup
1 � 
xdo�1

1 � � � � � 
xdo�1
l ) is a vector of firm-specific characteristics.

36Keep in mind that the characteristics are match-specific, so there is no requirement that the charac-
teristics of a firm be the same on the left and right sides.
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I put the 1 superscript on these downstream firms to remind us that their character-
istics are part of 
x1. Also, let l be the maximum of the number of downstream firms
whose characteristics are in 
x1 and 
x2; vectors of empty sets can be added as argu-
ments if the numbers of downstream firms in 
x1 and in 
x2 are not equal. Altogether,

f (
x1)= f (
xup
1 � 
xdo�1

1 � � � � � 
xdo�1
l ) and f (
x2)= f (
xup

2 � 
xdo�2
1 � � � � � 
xdo�2

l ).
The proposed rewriting of f (
x1) > f(
x2) to make it a local production maximization

inequality by adding the same terms to both sides of the inequality is

f (
x1)+
l−1∑
d=1

f (
xup
1 � 
xdo�1

1 � � � � � 
xdo�1
d )+ f (
xup

1 )+
l∑

d=1

f (
xdo�1
d )

+
l−1∑
d=1

f (
xup
2 � 
xdo�2

1 � � � � � 
xdo�2
d )+ f (
xup

2 )+
l∑

d=1

f (
xdo�2
d )

(36)

>

l−1∑
d=1

f (
xup
1 � 
xdo�1

1 � � � � � 
xdo�1
d )+ f (
xup

1 )+
l∑

d=1

f (
xdo�1
d )

+
l−1∑
d=1

f (
xup
2 � 
xdo�2

1 � � � � � 
xdo�2
d )+ f (
xup

2 )+
l∑

d=1

f (
xdo�2
d )+ f (
x2)�

The inequality holds for f = f 0 and holds with the opposite sign (<) for f = f 1.
By inspection, one can loosely verify that (36) is almost, but not quite, a local

production maximization inequality, Definition 3.4, with firm-specific characteris-
tics. The term 
x1 on the left exchanges 
xdo�1

l for the option of being unmatched, 0,

to add f (
xup
1 � 
xdo�1

1 � � � � � 
xdo�1
l−1 ) + f (
xdo�1

l ) on the right side. Following a pattern, each

term f (
xup
1 � 
xdo�1

1 � � � � � 
xdo�1
d ) on the left side splits away the term 
xdo�1

d to leave a

f (
xu1 � 
xdo�1
1 � � � � � 
xdo�1

d−1 )+ f (
xdo�1
d ) on the right. Each term on the left involving the charac-

teristics originally from 
x2, for example, f (
xup
2 � 
xdo�2

1 � � � � � 
xdo�2
d ), combines with an un-

matched 
xdo�1
d+1 to form f (
xup

2 � 
xdo�2
1 � � � � � 
xdo�2

d+1 ) on the right side.
The inequality (36) is not a local production maximization inequality. For example,

look at the terms f (
xup
1 )+ ∑l

d=1 f (
xdo�1
d ) on the left side. These unmatched firms do not

combine with other firms to make pairings on the right side of (36). Therefore, as written,
(36) is not a local production maximization inequality according to Definition 3.4. How-
ever, the statement of the theorem imposes a noninnocuous localization normalization,
which gives f (
xup

1 )+∑l
d=1 f (
xdo�1

d )= 0 on the left and f (
xup
2 )+∑l

d=1 f (
xdo�2
d )= 0 on the

right. With this change, (36) becomes

f (
x1)+
l−1∑
d=1

f (
xup
1 � 
xdo�1

1 � � � � � 
xdo�1
d )+

l−1∑
d=1

f (
xup
2 � 
xdo�2

1 � � � � � 
xdo�2
d )

+ f (
xup
2 )+

l∑
d=1

f (
xdo�2
d )

(37)
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Table 2. Proof of Theorem 6.6: Demonstrating that (37) is a local production maximization in-
equality.

Index (1) (2) (3) (4) (5) (6)
c 
x(uc� {0}) 
x(uc�Duc ) 
x(0� {dc}) π〈uc�dc〉 
x(0� {π〈uc�dc〉}) 
x(uc� (Duc\{dc})∪ {π〈uc�dc〉})

1 
xup
1 
x1 
xdo�1

l dl+1 ∅ (
xup
1 � 
xdo�1

1 � � � � � 
xdo�1
l−1 )

2 
xup
1 (
xup

1 � 
xdo�1
1 ) 
xdo�1

1 dl+2 ∅ (
xup
1 )

���
���

���
���

���
���

���

l 
xup
1 (
xup

1 � 
xdo�1
1 � � � � � 
xdo�1

l−1 ) 
xdo�1
l−1 d2l ∅ (
xup

1 � 
xdo�1
1 � � � � � 
xdo�1

l−2 )

l+ 1 
xup
2 (
xup

2 � 
xdo�2
1 ) ∅ d2l+2 
xdo�2

2 (
xup
2 � 
xdo�2

1 � 
xdo�2
2 )

���
���

���
���

���
���

���

2l− 1 
xup
2 (
xup

2 � 
xdo�2
1 � � � � � 
xdo�2

l−1 ) ∅ d3l 
xdo�2
l 
x2 = (
xup

2 � 
xdo�2
1 � � � � � 
xdo�2

l )

2l 
xup
2 (
xup

2 ) ∅ d2l+1 
xdo�2
1 (
xup

2 � 
xdo�2
1 )

2l+ 1 ∅ (
xdo�2
1 ) 
xdo�2

1 d1 
xdo�1
l (
xdo�1

l )

2l+ 2 ∅ (
xdo�2
2 ) 
xdo�2

2 d2 
xdo�1
1 (
xdo�1

1 )

���
���

���
���

���
���

���

3l ∅ (
xdo�2
l ) 
xdo�2

l dl 
xdo�1
l−1 (
xdo�1

l−1 )

>

l−1∑
d=1

f (
xup
1 � 
xdo�1

1 � � � � � 
xdo�1
d )+ f (
xup

1 )+
l∑

d=1

f (
xdo�1
d )

+
l−1∑
d=1

f (
xup
2 � 
xdo�2

1 � � � � � 
xdo�2
d )+ f (
x2)�

which, by the above informal arguments, is a local production maximization inequality.
I intentionally do not remove from (36) all production functions with zero production.
Even though the production f (
xup

1 ) of singleton matches is zero, these production func-
tions are needed to show that (37) satisfies the definition of a local production maxi-
mization inequality, Definition 3.4.

The above arguments were informal. I will now formally show that (37) satisfies
Definition 3.4. There are 3l terms on the left side of (37). The number 3l explains the
statement in the theorem, “Further, let there be assignments A that contain as many
matched coalitions as three times the maximum quota of an upstream firm.” Let B1 =
{〈u1� d1〉� � � � � 〈u3l� d3l〉}, where the indexing 〈uc�dc〉 follows the order on the left side of
(37), from left to right. As I will show, many of these match partners will be 0, represent-
ing being unmatched. Now let

B2 = {〈u1� dl+1〉� 〈u2� dl+2〉� � � � � 〈ul�d2l〉� 〈ul+1� d2l+2〉� � � � �
〈u2l−1� d3l〉� 〈u2l� d2l+1〉� 〈u2l+1� d1〉� � � � � 〈u3l� dl〉}�

The match 〈u1� dl+1〉 ∈ B2 means that the upstream firm u1, which on the left side has
characteristics 
x(u1�Du1) = 
x1, exchanges a downstream firm d1 for the downstream
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firm dl+1 ∈ Dul+1 . In this case, downstream firm d1 has the characteristics 
xdo�1
l , while

dl+1 is actually a dummy partner, 0, representing being unmatched. For each index
c = 1� � � � �3l, Table 2 lists the upstream firm characteristics, the characteristics for the
group of all firms uc and Duc , downstream firm dc ’s characteristics for the match in B1,
the downstream firm partner in the permutation π creating B2, the characteristics of
that downstream firm partner, and the characteristics of the entire group of an upstream
firm and its downstream firm partners after the switch. One can verify that the charac-
teristics of the firm π〈dc�uc〉 in column 5 are always the same as the characteristics of
that downstream firm in column 3. This is the key idea behind showing that (37) is a local
production maximization inequality with firm-specific characteristics: the characteris-
tics of downstream firms remain the same after the permutation of partners between B1

and B2.
The remainder of the proof follows arguments similar to those in previous proofs.
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