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Panel data models with nonadditive unobserved heterogeneity:
Estimation and inference
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This paper considers fixed effects estimation and inference in linear and non-
linear panel data models with random coefficients and endogenous regressors.
The quantities of interest—means, variances, and other moments of the random
coefficients—are estimated by cross sectional sample moments of generalized
method of moments (GMM) estimators applied separately to the time series of
each individual. To deal with the incidental parameter problem introduced by the
noise of the within-individual estimators in short panels, we develop bias correc-
tions. These corrections are based on higher-order asymptotic expansions of the
GMM estimators and produce improved point and interval estimates in moder-
ately long panels. Under asymptotic sequences where the cross sectional and time
series dimensions of the panel pass to infinity at the same rate, the uncorrected
estimators have asymptotic biases of the same order as their asymptotic standard
deviations. The bias corrections remove the bias without increasing variance. An
empirical example on cigarette demand based on Becker, Grossman, and Murphy
(1994) shows significant heterogeneity in the price effect across U.S. states.

Keywords. Correlated random-coefficient model, panel data, instrumental vari-
ables, GMM, fixed effects, bias, incidental parameter problem, cigarette demand.
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1. Introduction

This paper considers estimation and inference in linear and nonlinear panel data mod-
els with random coefficients and endogenous regressors. The quantities of interest are
means, variances, and other moments of the distribution of the random coefficients. In
a state level panel model of rational addiction, for example, we might be interested in
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the mean and variance of the distribution of the price effect on cigarette consumption
across states, controlling for endogenous past and future consumption. These models
pose important challenges in estimation and inference if the relation between the re-
gressors and random coefficients is left unrestricted. Fixed effects methods based on
generalized method of moments (GMM) estimators applied separately to the time se-
ries of each individual can be severely biased due to the incidental parameter problem.
The source of the bias is the finite-sample bias of GMM if some of the regressors are
endogenous or the model is nonlinear in parameters, or nonlinearities if the parameter
of interest is the variance or other high-order moment of the random coefficients. Ne-
glecting the heterogeneity and imposing fixed coefficients does not solve the problem,
because the resulting estimators are generally inconsistent for the mean of the random
coefficients (Yitzhaki (1996), and Angrist, Graddy, and Imbens (2000)).1 Moreover, im-
posing fixed coefficients does not allow us to estimate other moments of the distribution
of the random coefficients.

We introduce a class of bias-corrected panel fixed effects GMM estimators. Thus,
instead of imposing fixed coefficients, we estimate different coefficients for each indi-
vidual using the time series observations and we correct the sample moments of the
estimated coefficients for the incidental parameter bias. For linear models, in addition
to the bias correction, these estimators differ from the standard fixed effects estimators
in that both the intercept and the slopes are different for each individual. Moreover, un-
like for the classical random-coefficient estimators, they do not rely on any restriction
in the relationship between the regressors and random coefficients; see Hsiao and Pe-
saran (2004) for a recent survey on random coefficient models. This flexibility allows us
to account for Roy-type (Roy (1951)) selection where the regressors are decision variables
with levels determined by their returns. Linear models with Roy selection are commonly
referred to as correlated random-coefficient models in the panel data literature. In the
presence of endogenous regressors, treating the random coefficients as fixed effects is
also convenient to overcome the identification problems in these models pointed out
by Kelejian (1974).

The most general models we consider are semiparametric in the sense that the distri-
bution of the random coefficients is unspecified and the parameters are identified from
moment conditions. These conditions can be nonlinear functions in parameters and
variables, accommodating both linear and nonlinear random-coefficient models, and
allowing for the presence of time varying endogeneity in the regressors that is not cap-
tured by the random coefficients. We use the moment conditions to estimate the model
parameters and other quantities of interest via GMM methods applied separately to the
time series of each individual. The resulting estimates can be severely biased in short
panels due to the incidental parameters problem, which in this case is a consequence
of the finite-sample bias of GMM (Newey and Smith (2004)) and/or the nonlinearity of
the quantities of interest with respect to the random coefficients. We develop analytical
corrections to reduce the bias.

1Heckman and Vytlacil (2000) and Angrist (2004) found sufficient conditions for fixed-coefficient ordi-
nary least squares (OLS) and instrumental variable (IV) estimators to be consistent for the mean coefficient.
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To derive the bias corrections, we use higher-order expansions of the GMM estima-
tors, extending the analysis in Newey and Smith (2004) for cross sectional estimators
to panel data estimators with fixed effects and serial dependence. If n and T denote
the cross sectional and time series dimensions of the panel, the corrections remove the
leading term of the bias of order O(T−1), and center the asymptotic distribution at the
true parameter value under sequences where n and T grow at the same rate. This ap-
proach is aimed at performing well in econometric applications that use moderately
long panels, where the most important part of the bias is captured by the first term
of the expansion. Other previous studies that used a similar approach for the analysis
of linear and nonlinear fixed effects estimators in panel data include, among others,
Kiviet (1995), Phillips and Moon (1999), Alvarez and Arellano (2003), Hahn and Kuer-
steiner (2002, 2011), Lancaster (2002), Woutersen (2002), and Hahn and Newey (2004).
See Arellano and Hahn (2007) for a survey of this literature and additional references.

The first distinctive feature of our corrections is that they can be used in overidenti-
fied models where the number of moment restrictions is greater than the dimension of
the parameter vector. This situation is common in economic applications such as ratio-
nal expectation models. Overidentification complicates the analysis by introducing an
initial stage for estimating optimal weighting matrices to combine the moment condi-
tions, and precludes the use of the existing methods. For example, Hahn and Newey’s
(2004) and Hahn and Kuersteiner’s (2011) general bias reduction methods for nonlin-
ear panel data models do not cover optimal two-step GMM estimators. A second dis-
tinctive feature is that our results are specifically developed for models with multidi-
mensional nonadditive heterogeneity, whereas the previous studies focused mostly on
models with additive heterogeneity captured by an scalar individual effect. Exceptions
include Arellano and Hahn (2006) and Bester and Hansen (2008), who also consid-
ered multidimensional heterogeneity, but they focused on parametric likelihood-based
panel models with exogenous regressors. Bai (2009) analyzed related linear panel mod-
els with exogenous regressors and multidimensional interactive individual effects. Bai’s
nonadditive heterogeneity allows for interaction between individual effects and unob-
served factors, whereas the nonadditive heterogeneity that we consider allows for inter-
action between individual effects and observed regressors. The third distinctive feature
of our analysis is the focus on the moments of the distribution of the individual effects
or random coefficients as one of the main quantities of interest.

We illustrate the applicability of our methods with empirical and numerical ex-
amples based on the cigarette demand application of Becker, Grossman, and Murphy
(1994). Here, we estimate a linear rational addictive demand model with state-specific
coefficients for price and common parameters for the other regressors using a panel
data set of U.S. states. We find that standard estimators that do not account for non-
additive heterogeneity by imposing a constant coefficient for price can have important
biases for the common parameters, mean of the price coefficient, and demand elastici-
ties. The analytical bias corrections are effective in removing the bias of the estimates of
the mean and standard deviation of the price coefficient. Figure 1 gives a preview of the
empirical results. It plots a normal approximation to the distribution of the price effect
based on uncorrected and bias-corrected estimates of the mean and standard deviation
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Figure 1. Normal approximation to the distribution of price effects using uncorrected (solid
line) and bias-corrected (dashed line) estimates of the mean and standard deviation of the dis-
tribution of price effects. Uncorrected estimates of the mean and standard deviation are −36 and
13; bias-corrected estimates are −31 and 10.

of the distribution of the price coefficient. The figure shows that there is important het-
erogeneity in the price effect across states. The bias correction reduces by more than
15% the absolute value of the estimate of the mean effect and by 30% the estimate of the
standard deviation.

Some of the results for the linear model are related to the recent literature on cor-
related random-coefficient panel models with fixed T . Graham and Powell (2012) gave
identification and estimation results for average effects. Arellano and Bonhomme (2012)
studied identification of the distributional characteristics of the random coefficients in
exogenous linear models. None of these papers considered the case where some of the
regressors have time varying endogeneity that is not captured by the random coeffi-
cients or the model is nonlinear. For nonlinear models, Chernozhukov et al. (2013) con-
sidered identification and estimation of average and quantile treatment effects. Their
nonparametric and semiparametric bounds do not require large T , but they do not cover
models with continuous regressors and time varying endogeneity.

The rest of the paper is organized as follows. Section 2 illustrates the type of models
considered and discusses the nature of the bias in two examples. Section 3 introduces
the general model and fixed effects GMM estimators. Section 4 derives the asymptotic
properties of the estimators. The bias corrections and their asymptotic properties are
given in Section 5. Section 6 describes the empirical and numerical examples. Section 7
concludes with a summary of the main results. Additional numerical examples, proofs,
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and other technical details are given in the Appendix, available in a supplementary file
on the journal website, http://qeconomics.org/supp/75/supplement.pdf.

2. Motivating examples

In this section, we illustrate the nature of the bias problem with two simple examples.
The first example is a linear correlated random-coefficient model with endogenous re-
gressors. We show that averaging IV estimators applied separately to the time series of
each individual is biased for the mean of the random coefficients because of the finite-
sample bias of IV. The second example considers estimation of the variance of the in-
dividual coefficients in a simple setting without endogeneity. Here the sample variance
of the estimators of the individual coefficients is biased because of the nonlinearity of
the variance with respect to the individual coefficients. The discussion in this section is
heuristic, leaving to Section 4 the specification of precise regularity conditions for the
validity of the asymptotic expansions used.

2.1 Correlated random-coefficient model with endogenous regressors

Consider the panel model

yit = α0i + α1ixit + εit (i= 1� � � � � n; t = 1� � � � �T )� (2.1)

where yit is a response variable, xit is an observable regressor, εit is an unobservable
error term, and i and t usually index individual and time period, respectively.2 This
is a linear random-coefficient model where the effect of the regressor is heterogenous
across individuals, but no restriction is imposed on the distribution of the random co-
efficient vector αi := (α0i� α1i)

′. The regressor can be correlated with the error term and
a valid instrument (1� zit) is available for (1�xit) conditional on αi, that is, E[εit | αi] = 0,
E[zitεit | αi] = 0, and Cov[zitxit | αi] �= 0. An important example of this model is the panel
version of the treatment–effect model (Wooldridge (2002, Chapter 10.2.3), and Angrist
and Hahn (2004)). Here, the objective is to evaluate the effect of a treatment (D) on an
outcome variable (Y ). The average causal effect for each level of treatment is defined
as the difference between the potential outcome that the individual would obtain with
and without the treatment, Yd −Y0. If individuals can choose the level of treatment, po-
tential outcomes and levels of treatment are generally correlated. An instrumental vari-
ableZ can be used to identify the causal effect. If potential outcomes are represented as
the sum of permanent individual components and transitory individual time-specific
shocks, that is, Yjit = Yji + εjit for j ∈ {0�1}, then we can write this model as a special
case of (2.1) with yit = (1 −Dit)Y0it +DitY1it , α0i = Y0i, α1i = Y1i−Y0i, xit =Dit , zit =Zit ,
and εit = (1 −Dit)ε0it +Ditε1it .

Suppose that we are ultimately interested in α1 := E[α1i], the mean of the random
slope coefficient. We could neglect the heterogeneity and run fixed effects OLS and IV

2More generally, i denotes a group identifier and t indexes the observations within the group. Examples
of groups include individuals, states, households, schools, and twins.

http://qeconomics.org/supp/75/supplement.pdf
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regressions in

yit = α0i + α1xit + uit�

where uit = xit(α1i − α1)+ εit in terms of the model (2.1). In this case, OLS and IV esti-
mate weighted means of the random coefficients; see, for example, Yitzhaki (1996) and
Angrist and Krueger (1999) for OLS, and Angrist, Graddy, and Imbens (2000) for IV. Ordi-
nary least squares puts more weight on individuals with higher variances of the regressor
because they give more information about the slope, whereas IV weighs individuals in
proportion to the variance of the first stage fitted values because these variances reflect
the amount of information that the individuals convey about the part of the slope af-
fected by the instrument. These weighted means are generally different from the mean
coefficient because the weights can be correlated with the random coefficients.

To see how these implicit OLS and IV weighting schemes affect the estimand of the
fixed-coefficient estimators, assume that the relationship between xit and zit is linear,
that is, xit = π0i + π1izit + υit , (εit�υit) is normal conditional on (zit �αi�πi), zit is in-
dependent of (αi�πi), and (αi�πi) is normal, for πi := (π0i�π1i)

′. Then the probability
limits of the OLS and IV estimators are3

αOLS
1 = α1 + {

Cov[εit�υit] + 2E[π1i]Var[zit]Cov[α1i�π1i]
}
/Var[xit]�

αIV
1 = α1 + Cov[α1i�π1i]/E[π1i]�

These expressions show that the OLS estimand differs from the average coefficient in
the presence of endogeneity, that is, nonzero correlation between the individual time-
specific error terms, or whenever the random coefficients are correlated; the IV esti-
mand differs from the average coefficient only in the latter case.4 In the treatment–
effect model, correlation between the error terms arises in presence of endogeneity bias
and correlation between the individual effects arises under Roy-type selection, that is,
when individuals who experience a higher permanent effect of the treatment are rel-
atively more prone to accept the offer of treatment. Wooldridge (2005) and Murtaza-
shvile and Wooldridge (2005) gave sufficient conditions for consistency of standard
OLS and IV fixed effects estimators. These conditions amount to Cov[εit�υit] = 0 and
Cov[xit�α1i|αi0] = 0.

Our proposal is to estimate the mean coefficient from separate time series estima-
tors for each individual. This strategy consists of running OLS or IV for each individual
and then estimating the population moment of interest by the corresponding sample

3The limit of the IV estimator is obtained from a first stage equation that also imposes fixed coefficients,
that is, xit = π0i + π1zit +wit , where wit = zit (π1i − π1)+ υit . When the first stage equation is different for
each individual, the limit of the IV estimator is

αIV
1 = α1 + 2E[π1i] Cov[α1i�π1i]/

{
E[π1i]2 + Var[π1i]

}
�

See Theorems 2 and 3 in Angrist and Imbens (1995) for a related discussion.
4This feature of the IV estimator was pointed out in Angrist, Graddy, and Imbens (2000, p. 507).
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moment of the individual estimators. For example, the mean of the random slope co-
efficient in the population is estimated by the sample average of the OLS or IV slopes.
These sample moments converge to the population moments of interest as the number
of individuals n and time periods T grow. However, since a different coefficient is esti-
mated for each individual, the asymptotic distribution of the sample moments can have
bias due to the incidental parameter problem (Neyman and Scott (1948)).

To illustrate the nature of this bias, consider the estimator of the mean coefficient α1

constructed from individual time series IV estimators. In this case, the incidental param-
eter problem is caused by the finite-sample bias of IV. This can be explained using some
expansions. Thus, assuming independence across t, standard higher-order asymptotics
gives (e.g., Rilstone, Srivastava, and Ullah (1996)), as T → ∞,

√
T

(̂
αIV

1i − α1i
) = 1√

T

T∑
t=1

ψit + 1√
T
βi + oP

(
T−1/2)�

where ψit = E[z̃it x̃it | αi�πi]−1z̃itεit is the influence function of IV, βi = −E[z̃it x̃it |
αi�πi]−2E[z̃2

it x̃itεit | αi�πi] is the higher-order bias of IV (see, e.g., Nagar (1959), and Buse
(1992)), and the variables with a tilde are deviations from their individual means, for
example, z̃it = zit − E[zit | αi�πi]. In the previous expression, the first-order asymptotic
distribution of the individual estimator is centered at the truth since

√
T (̂αIV

1i − α1i)→d

N(0�σ2
i ) as T → ∞, where σ2

i =E[z̃it x̃it | αi�πi]−2E[z̃2
itε

2
it | αi�πi].

Let α̂1 = n−1 ∑n
i=1 α̂

IV
1i , the sample average of the IV estimators. The asymptotic distri-

bution of α̂1 is not centered around α1 in short panels or, more precisely, under asymp-
totic sequences where T/

√
n→ 0. To see this, consider the expansion for α̂1:

√
n(̂α1 − α1)= 1√

n

n∑
i=1

(α1i − α1)+ 1√
n

n∑
i=1

(̂
αIV

1i − α1i
)
�

The first term is the standard influence function for a sample mean of known elements.
The second term comes from the estimation of the individual elements inside the sam-
ple mean. Assuming independence across i and combining the previous expansions,

√
n(̂α1 − α1)= 1√

n

n∑
i=1

(α1i − α1)︸ ︷︷ ︸
=OP(1)

+ 1√
T

1√
nT

n∑
i=1

T∑
t=1

ψit︸ ︷︷ ︸
=OP(1/

√
T)

+
√
n

T

1
n

n∑
i=1

βi︸ ︷︷ ︸
=O(√n/T)

+oP(1)�

This expression shows that the bias term dominates the asymptotic distribution of α̂1

in short panels under sequences where T/
√
n→ 0. Averaging reduces the order of the

variance of α̂IV
1i without affecting the order of its bias. In this case, the estimation of the

random coefficients has no first-order effect in the asymptotic variance of α̂1 because
the second term of the expansion is of smaller order than the first term.

A potential drawback of the individual by individual time series estimation is
that it might more be sensitive to weak identification problems than fixed-coefficient
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pooled estimation.5 In the random-coefficient model, for example, we require that
E[z̃it x̃it | αi�πi] = π1i �= 0 with probability 1, that is, for all the individuals, whereas fixed-
coefficient IV only requires that this condition holds on average, that is, E[π1i] �= 0. The
individual estimators are, therefore, more sensitive than traditional pooled estimators
to weak instruments problems. On the other hand, individual by individual estimation
relaxes the exogeneity condition by conditioning on additive and nonadditive time in-
variant heterogeneity, that is, E[z̃itεit | αi�πi] = 0. Traditional fixed effects estimators
only condition on additive time invariant heterogeneity. A more rigorous treatment of
these identification issues is beyond the scope of this paper.

2.2 Variance of individual coefficients

Consider the panel model

yit = αi + εit� εit | αi ∼
(
0�σ2

ε

)
�αi ∼

(
α�σ2

α

)
(t = 1� � � � �T ; i= 1� � � � � n)�

where yit is an outcome variable of interest, which can be decomposed into an individ-
ual effect αi with mean α and variance σ2

α, and an error term εit with zero mean and
variance σ2

ε conditional on αi. The parameter of interest is σ2
α = Var[αi] and its fixed

effects estimator is

σ̂2
α = (n− 1)−1

n∑
i=1

(̂αi − α̂)2�

where α̂i = T−1 ∑T
t=1 yit and α̂= n−1 ∑n

i=1 α̂i.
Let ϕαi = (αi − α)2 − σ2

α and ϕεit = ε2
it − σ2

ε . Assuming independence across i and t,
a standard asymptotic expansion gives, as n�T → ∞,

√
n
(
σ̂2
α − σ2

α

) = 1√
n

n∑
i=1

ϕαi︸ ︷︷ ︸
=OP(1)

+ 1√
T

1√
nT

n∑
i=1

T∑
t=1

ϕεit︸ ︷︷ ︸
=OP(1/

√
T)

+
√
n

T
σ2
ε︸ ︷︷ ︸

=O(√n/T)

+oP(1)�

The first term corresponds to the influence function of the sample variance if the αi’s
were known. The second term comes from the estimation of the αi’s. The third term is
a bias term that comes from the nonlinearity of the variance in α̂i. The bias term domi-
nates the expansion in short panels under sequences where T/

√
n→ 0. As in the previ-

ous example, the estimation of the αi’s has no first-order affect in the asymptotic vari-
ance since the second term of the expansion is of smaller order than the first term.

3. The model and estimators

We consider a general model with a finite number of moment conditions dg. To describe
it, let the data be denoted by zit (i = 1� � � � � n; t = 1� � � � �T ). Also, let θ be a dθ vector
of common parameters, let {αi : 1 ≤ i ≤ n} be a sequence of dα vectors with the real-

5We thank a referee for pointing out this issue.
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izations of the individual effects, and let g(z;θ�αi) be a dg vector of functions, where
dg ≥ dθ + dα.6 The model has true parameters θ0 and {αi0 : 1 ≤ i≤ n} that satisfy the mo-
ment conditions

E
[
g(zit;θ0�αi0)

] = 0 (t = 1� � � � �T ; i= 1� � � � � n)�

where E[·] denotes conditional expectation with respect to the distribution of zit condi-
tional on the individual effects.

Let Ē[·] denote the expectation taken with respect to the distribution of the individ-
ual effects. In the previous model, the ultimate quantities of interest are smooth func-
tions of parameters and observations, which in some cases could be the parameters
themselves,

ζ = ĒE[
ζi(zit;θ0�αi0)

]
�

if ĒE|ζi(zit;θ0�αi0)| <∞, or moments or other smooth functions of the individual ef-
fects,

μ= Ē[
μ(αi0)

]
�

if Ē|μ(αi0)|<∞. In the correlated random-coefficient example, g(zit;θ0�αi0)= zit(yit −
α0i0 − α1i0xit), θ = ∅, dθ = 0, dα = 2, and μ(αi0) = α1i0. In the variance of the random-
coefficients example, g(zit;θ0�αi0) = (yit − α0i0), θ = ∅, dθ = 0, dα = 1, and μ(αi0) =
(α1i0 − Ē[α1i0])2.

Some more notation, which will be extensively used in the definition of the estima-
tors and in the analysis of their asymptotic properties, is

Ωji(θ�αi) := E[
g(zit;θ�αi)g(zi�t−j;θ�αi)′

]
� j ∈ {0�1�2� � � �}�

Gθi(θ�αi) := E[
Gθ(zit;θ�αi)

] =E[
∂g(zit;θ�αi)/∂θ′]�

Gαi(θ�αi) := E[
Gα(zit;θ�αi)

] =E[
∂g(zit;θ�αi)/∂α′

i

]
�

where the prime denotes transpose and higher-order derivatives are denoted by adding
subscripts. Here Ωji is the covariance matrix between the moment conditions for indi-
vidual i at times t and t − j, and Gθi and Gαi are time series average derivatives of the
moment conditions. Analogously, for sample moments,

Ω̂ji(θ�αi) := T−1
T∑

t=j+1

g(zit;θ�αi)g(zi�t−j;θ�αi)′� j ∈ {0�1� � � � �T − 1}�

Ĝθi(θ�αi) := T−1
T∑
t=1

Gθ(zit;θ�αi)= T−1
T∑
t=1

∂g(zit;θ�αi)/∂θ′�

Ĝαi(θ�αi) := T−1
T∑
t=1

Gα(zit;θ�αi)= T−1
T∑
t=1

∂g(zit;θ�αi)/∂α′
i�

6We impose that some of the parameters are common for all the individuals to help preserve degrees of
freedom in estimation of short panels with many regressors. An order condition for this model is that the
number of individual-specific parameters dα has to be less than the time dimension T .
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In the sequel, the arguments of the expressions will be omitted when the func-

tions are evaluated at the true parameter values (θ′
0�α

′
i0)

′, for example, g(zit) means

g(zit;θ0�αi0).

In cross section and time series models, parameters defined from moment condi-

tions are usually estimated using the two-step GMM estimator of Hansen (1982). To de-

scribe how to adapt this method to panel models with fixed effects (FE), let ĝi(θ�αi) :=
T−1 ∑T

t=1 g(zit;θ�αi) and let (θ̃′� {α̃′
i}ni=1)

′ be some preliminary one-step FE-GMM es-

timator given by (θ̃′� {α̃′
i}ni=1)

′ = arg inf{(θ′�α′
i)

′∈Υ }ni=1

∑n
i=1 ĝi(θ�αi)

′ Ŵ −1
i ĝi(θ�αi), where

Υ ⊂ R
dθ+dα denotes the parameter space and {Ŵi : 1 ≤ i ≤ n} is a sequence of positive

definite symmetric dg × dg weighting matrices. The two-step FE-GMM estimator is the

solution to the program

(
θ̂′�

{
α̂′
i

}n
i=1

)′ = arg inf
{(θ′�α′

i)
′∈Υ }ni=1

n∑
i=1

ĝi(θ�αi)
′Ω̂i(θ̃� α̃i)−1ĝi(θ�αi)�

where Ω̂i(θ̃� α̃i) is an estimator of the optimal weighting matrix for individual i:

Ωi =Ω0i +
∞∑
j=1

(
Ωji +Ω′

ji

)
�

To facilitate the asymptotic analysis, in the estimation of the optimal weighting matrix,

we assume that g(zit;θ0�αi0) is a martingale difference sequence with respect to the

sigma algebra σ(αi� zi�t−1� zi�t−2� � � �), so thatΩi =Ω0i and Ω̂i(θ̃� α̃i)= Ω̂0i(θ̃� α̃i). This as-

sumption holds in rational expectation models. We do not impose this assumption to

derive the limiting distribution of the one-step FE-GMM estimator.

For the subsequent analysis of the asymptotic properties of the estimator, it is con-

venient to consider the concentrated or profile problem. This problem is a two-step

procedure. In the first step, the program is solved for the individual effects, given the

value of the common parameter θ. The first-order conditions (FOC) for this stage,

reparametrized conveniently as in Newey and Smith (2004), are

t̂i
(
θ� γ̂i(θ)

) = −
(

Ĝαi
(
θ� α̂i(θ)

)′̂
λi(θ)

ĝi
(
θ� α̂i(θ)

) + Ω̂i(θ̃� α̃i)̂λi(θ)

)
= 0 (i= 1� � � � � n)�

where λi is a dg vector of individual Lagrange multipliers for the moment conditions and

γi := (α′
i� λ

′
i)

′ is an extended (dα + dg) vector of individual effects. Then the solutions to

the previous equations are plugged into the original problem, leading to the first-order

conditions for θ, ŝ(θ̂)= 0, where

ŝ(θ)= n−1
n∑
i=1

ŝi
(
θ� γ̂i(θ)

) = −n−1
n∑
i=1

Ĝθi
(
θ� α̂i(θ)

)′̂
λi(θ)
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is the profile score function for θ.7

Fixed effects estimators of smooth functions of parameters and observations are
constructed using the plug-in principle, that is, ζ̂ = ζ̂(θ̂), where

ζ̂(θ)= (nT)−1
n∑
i=1

T∑
t=1

ζ
(
zit;θ� α̂i(θ)

)
�

Similarly, moments of the individual effects are estimated by μ̂= μ̂(θ̂), where

μ̂(θ)= n−1
n∑
i=1

μ
(̂
αi(θ)

)
�

4. Asymptotic theory for FE-GMM estimators

In this section, we analyze the properties of one-step and two-step FE-GMM estimators
in large samples. We show consistency and derive the asymptotic distributions for the
estimators of the individual effects, common parameters and other quantities of interest
under sequences where both n and T pass to infinity with the sample size. We establish
results separately for one-step and two-step estimators because the former are derived
under weaker assumptions.

We make the following assumptions to show uniform consistency of the FE-GMM
one-step estimator.

Condition 1 (Sampling and Asymptotics). (i) For each i, conditional on αi, zi :=
{zit : 1 ≤ t ≤ T } is a stationary mixing sequence of random vectors with strong mixing
coefficients ai(l) = supt supA∈Ai

t �D∈Di
t+l

|P(A ∩ D) − P(A)P(D)|, where Ai
t = σ(αi� zit �

zi�t−1� � � �) and Di
t = σ(αi� zit � zi�t+1� � � �), such that supi |ai(l)| ≤ Cal for some 0 < a < 1

and some C > 0; (ii) {(zi�αi) : 1 ≤ i ≤ n} are independent and identically distributed
across i; (iii) n�T → ∞ such that n/T → κ2, where 0< κ2 <∞; and (iv) dim[g(·;θ�αi)] =
dg <∞.

For a matrix or vector A, let |A| denote the Euclidean norm, that is, |A|2 =
trace[AA′].

Condition 2 (Regularity and Identification). (i) The vector of moment functions g(·;
θ�α) = (g1(·;θ�α)� � � � � gdg(·;θ�α))′ is continuous in (θ�α) ∈ Υ ; (ii) the parameter space

Υ is a compact, convex subset of R
dθ+dα ; (iii) dim(θ�α) = dθ + dα ≤ dg; (iv) there exists

a function M(zit) such that |gk(zit;θ�αi)| ≤M(zit), |∂gk(zit;θ�αi)/∂(θ�αi)| ≤M(zit) for

7In the original parametrization, the FOC can be written as

n−1
n∑
i=1

Ĝθi
(
θ̂� α̂i(θ̂)

)′
Ω̂i(θ̃� α̃i)

−ĝi
(
θ� α̂i(θ)

) = 0�

where the superscript bar (−) denotes a generalized inverse.
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k = 1� � � � � dg, and supi E[M(zit)4+δ] < ∞ for some δ > 0; and (v) there exists a deter-
ministic sequence of symmetric finite positive definite matrices {Wi : 1 ≤ i≤ n} such that
sup1≤i≤n |Ŵi −Wi| →P 0, and, for each η> 0,

inf
i

[
QWi (θ0�αi0)− sup

{(θ�α):|(θ�α)−(θ0�αi0)|>η}
QWi (θ�α)

]
> 0�

where

QWi (θ�αi) := −gi(θ�αi)′W −1
i gi(θ�αi)� gi(θ�αi) := E[

ĝi(θ�αi)
]
�

Conditions 1(i) and (ii) impose cross sectional independence, but allow for weak
time series dependence as in Hahn and Kuersteiner (2011). Conditions 1(iii) and (iv) de-
scribe the asymptotic sequences that we consider, where T and n grow at the same rate
with the sample size, whereas the number of moments dg is fixed. Condition 2 adapts
standard assumptions of the GMM literature to guarantee the identification of the pa-
rameters based on time series variation for all the individuals; see Newey and McFadden
(1994). The dominance and moment conditions in Condition 2(iv) are used to establish
uniform consistency of the estimators of the individual effects.

Theorem 1 (Uniform Consistency of One-Step Estimators). Suppose that Conditions 1
and 2 hold. Then, for any η> 0,

Pr
(|θ̃− θ0| ≥ η

) = o(T−1)�
where θ̃= arg max{(θ�αi)∈Υ }ni=1

1
n

∑n
i=1 Q̂

W
i (θ�αi) and Q̂Wi (θ�αi) := −ĝi(θ�αi)′Ŵ −1

i ĝi(θ�αi).
Also, for any η> 0,

Pr
(

sup
1≤i≤n

|α̃i − αi0| ≥ η
)

= o(T−1) and Pr
(

sup
1≤i≤n

|λ̃i| ≥ η
)

= o(T−1)�
where α̃i = arg maxα Q̂Wi (θ̃�α) and λ̃i = −Ŵ −1

i ĝi(θ̃� α̃i).

Let ΣWαi := (G′
αi
W −1
i Gαi)

−1, HW
αi

:= ΣWαiG
′
αi
W −1
i , PWαi := W −1

i − W −1
i GαiH

W
αi

, JWsi :=
G′
θi
PWαi Gθi , and JWs := Ē[JWsi ]. We use the following additional assumptions to derive the

limiting distribution of the one-step estimator.

Condition 3 (Regularity). (i) For each i, (θ0�αi0) ∈ int[Υ ], and (ii) JWs is finite positive
definite, and {G′

αi
W −1
i Gαi : 1 ≤ i ≤ n} is a sequence of finite positive definite matrices,

where {Wi : 1 ≤ i≤ n} is the sequence of matrices of Condition 2(v).

Condition 4 (Smoothness). (i) There exists a function M(zit) such that, for k =
1� � � � � dg,∣∣∂d1+d2gk(zit;θ�αi)/∂θd1 ∂α

d2
i

∣∣ ≤M(zit)� 0 ≤ d1 + d2 ≤ 1� � � � �5�

and supi E[M(zit)5(dθ+dα+6)/(1−10v)+δ]<∞ for some δ > 0 and 0< v < 1/10, and (ii) there
exists ξi(zit) such that Ŵi = Wi + ∑T

t=1 ξi(zit)/T + RWi /T , where maxi |RWi | = oP(T
1/2),

E[ξi(zit)] = 0, and supi E[|ξi(zit)|20/(1−10v)+δ]<∞ for some δ > 0 and 0< v < 1/10.
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Condition 3 is the panel data analog to the standard asymptotic normality condi-
tion for GMM with cross sectional data; see Newey and McFadden (1994). Condition 4 is
similar to Condition 4 in Hahn and Kuersteiner (2011), and it guarantees the existence of
higher-order expansions for the GMM estimators and the uniform convergence of their
remainder terms.

Let Gααi := (G′
ααi�1

� � � � �G′
ααi�q

)′, where Gααi�j = E[∂Gαi(zit)/∂αi�j], and let Gθαi :=
(G′

θαi�1
� � � � �G′

θαi�q
)′, where Gθαi�j = E[∂Gθi(zit)/∂αi�j]. The symbol ⊗ denotes the Kro-

necker product of matrices, Idα denotes a dα×dα identity matrix, ej denotes a unitary dg
vector with 1 in row j, and PWαi�j denotes the jth column of PWαi . Recall that the extended
individual effect is γi = (α′

i� λ
′
i)

′.

Lemma 1 (Asymptotic Expansion for One-Step Estimators of Individual Effects). Under
Conditions 1–4,

√
T(γ̃i0 − γi0)= ψ̃Wi + T−1/2QW1i + T−1RW2i � (4.1)

where γ̃i0 := γ̃i(θ0),

ψ̃Wi = −
(
HW
αi

PWαi

)
T−1/2

T∑
t=1

g(zit)
d→N

(
0� V Wi

)
�

n−1/2 ∑n
i=1 ψ̃

W
i

d→N(0� Ē[V Wi ]), n−1 ∑n
i=1Q

W
1i

p→ Ē[BWγi ], BWγi = BW�Iγi +BW�Gγi +BW�1Sγi , and

sup1≤i≤n RW2i = oP(
√
T) for

V Wi =
(
HW
αi

PWαi

)
Ωi

(
HW ′
αi
�PWαi

)
�

BW �Iγi
=

(
BW�Iαi

BW �Iλi

)

=
(
HW
αi

PWαi

)( ∞∑
j=−∞

E
[
Gαi(zit)H

W
αi
g(zi�t−j)

] −
dα∑
j=1

Gααi�jH
W
αi
ΩiH

W ′
αi
/2

)
�

BW �Gγi
=

(
BW�Gαi

B
W �G
λi

)
=

(
−ΣWαi
HW ′
αi

) ∞∑
j=−∞

E
[
Gαi(zit)

′PWαi g(zi�t−j)
]
�

BW �1Sγi
=

(
BW�1Sαi

BW �1Sλi

)

=
(
ΣWαi

−HW ′
αi

)(
dα∑
j=1

G′
ααi�j

PWαi ΩiH
W ′
αi
/2 +

dg∑
j=1

G′
ααi
(Idα ⊗ ej)HW

αi
ΩiP

W
αi�j
/2

)

+
(
HW
αi

PWαi

) ∞∑
j=−∞

E
[
ξi(zit)P

W
αi
g(zi�t−j)

]
�
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Theorem 2 (Limit Distribution of One-Step Estimators of Common Parameters). Under
Conditions 1–4,

√
nT(θ̃− θ0)

d→ −(
JWs

)−1
N

(
κBWs �V

W
s

)
�

where

JWs = Ē[
G′
θi
PWαi Gθi

]
�

V Ws = Ē[
G′
θi
PWαi ΩiP

W
αi
Gθi

]
�

BWs = Ē[
BW�Bsi +BW�Csi +BW�Vsi

]
and

BW�Bsi = −G′
θi

(
BW�Iλi

+BW�Gλi
+BW�1Sλi

)
�

B
W �C
si =

∞∑
j=−∞

E
[
Gθi(zit)

′PWαi gi(zi�t−j)
]
�

BW �Vsi = −
dα∑
j=1

G′
θαi�j

PWαi ΩiH
W ′
αi
/2 −

dg∑
j=1

G′
θαi
(Idα ⊗ ej)HW

αi
ΩiPαi�j/2�

The expressions for BW�Iλi
, BW�Gλi

, and BW�1Sλi
are given in Lemma 1.

The source of the bias is the nonzero expectation of the profile score of θ at the true
parameter value produced by the substitution of the unobserved individual effects by
sample estimators. These estimators converge to their true parameter value at a rate√
T , which is slower than

√
nT , the rate of convergence of the estimator of the com-

mon parameter. Intuitively, the rate for γ̃i0 is
√
T because only the T observations for

individual i convey information about γi0. In nonlinear and dynamic models, the slow
convergence of the estimator of the individual effect introduces bias in the estimators of
the rest of parameters. The expression of this bias can be explained with an expansion
of the score around the true value of the individual effects8:

E
[̂
sWi (θ0� γ̃i0)

] = E
[̂
sWi

] +E[̂
sWγi

]′
E[γ̃i0 − γi0] +E[(̂

sWγi −E[̂
sWγi

])′
(γ̃i0 − γi0)

]
+E

[dα+dg∑
j=1

(γ̃i0�j − γi0�j)E
[̂
sWγγi

]
(γ̃i0 − γi0)

]/
2 + o(T−1)

= 0 +BW�Bs /T +BW�Cs /T +BW�Vs /T + o(T−1)�
8Using the notation introduced in Section 3, the score is

ŝW (θ0)= n−1
n∑
i=1

ŝWi (θ0� γ̃i0)= −n−1
n∑
i=1

Ĝθi (θ0� α̃i0)
′λ̃i0�

where γ̃i0 = (α̃′
i0� λ̃

′
i0) is the solution to

t̂Wi (θ0� γ̃i0)= −
(
Ĝαi (θ0� α̃i0)

′λ̃i0
ĝi(θ0� α̃i0)+Wiλ̃i0

)
= 0�
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This expression shows that the bias has the same three components as in the maxi-
mum likelihood estimator (MLE) case; see Hahn and Newey (2004). The first compo-
nent, BW�Bs , comes from the higher-order bias of the estimator of the individual effects.
The second component, BW�Cs , is a correlation term and is present because individual
effects and common parameters are estimated using the same observations. The third
component, BW�Vs , is a variance term. The bias of the individual effects, BW�Bs , can be
further decomposed into three terms that correspond to the asymptotic bias for a GMM
estimator with the optimal score (BW�Iλ ) when W is used as the weighting function, the

bias arising from estimation of Gαi (BW�Gλ ), and the bias arising from not using an opti-

mal weighting matrix (BW�1Sλ ).
We use the following condition to show the consistency of the two-step FE-GMM

estimator.

Condition 5 (Smoothness, Regularity, and Martingale). (i) There exists a function
M(zit) such that |gk(zit;θ�αi)| ≤M(zit), |∂gk(zit;θ�αi)/∂(θ�αi)| ≤M(zit) for k = 1� � � � �
dg, and supi E[M(zit)10(dθ+dα+6)/(1−10v)+δ] < ∞ for some δ > 0 and 0 < v < 1/10;
(ii) {Ωi : 1 ≤ i ≤ n} is a sequence of finite positive definite matrices; and (iii) for each i,
g(zit;θ0�αi0) is a martingale difference sequence with respect to σ(αi� zi�t−1� zi�t−2� � � �).

Conditions 5(i) and (ii) are used to establish the uniform consistency of the estima-
tors of the individual weighting matrices. Condition 5(iii) is convenient to simplify the
expressions of the optimal weighting matrices. It holds, for example, in rational expec-
tation models that commonly arise in economic applications.

Theorem 3 (Uniform Consistency of Two-Step Estimators). Suppose that Conditions 1,
2, 3, and 5 hold. Then, for any η> 0,

Pr
(|θ̂− θ0| ≥ η

) = o(T−1)�
where θ̂= arg max{(θ′�α′

i)}ni=1∈Υ
∑n
i=1 Q̂

Ω
i (θ�αi) and Q̂Ωi (θ�αi) := −ĝi(θ�αi)′Ω̂i(θ̃� α̃i)−1ĝi(θ�

αi). Also, for any η> 0,

Pr
(

sup
1≤i≤n

|̂αi − α0| ≥ η
)

= o(T−1) and Pr
(

sup
1≤i≤n

|̂λi| ≥ η
)

= o(T−1)�
where α̂i = arg maxα Q̂Ωi (θ̂�α) and ĝi(θ̂� α̂i)+ Ω̂i(θ̃� α̃i)̂λi = 0.

We replace Condition 4 by the following condition to obtain the limit distribution of
the two-step estimator.

Condition 6 (Smoothness). There exists someM(zit) such that, for k= 1� � � � � dg,∣∣∂d1+d2gk(zit;θ�αi)/∂θd1 ∂α
d2
i

∣∣ ≤M(zit)� 0 ≤ d1 + d2 ≤ 1� � � � �5�

and supi E[M(zit)10(dθ+dα+6)/(1−10v)+δ]<∞ for some δ > 0 and 0< v < 1/10.



468 Fernández-Val and Lee Quantitative Economics 4 (2013)

Condition 6 guarantees the existence of higher-order expansions for the estimators
of the weighting matrices and uniform convergence of their remainder terms. Condi-
tions 5 and 6 are stronger versions of Conditions 2(iv), 2(v), and 4. They are presented
separately because they are only needed when there is a first stage where the weighting
matrices are estimated.

Let Σαi := (G′
αi
Ω−1
i Gαi)

−1,Hαi := ΣαiG′
αi
Ω−1
i , and Pαi :=Ω−1

i −Ω−1
i GαiHαi .

Lemma 2 (Asymptotic Expansion for Two-Step Estimators of Individual Effects). Under
Conditions 1–5,

√
T(γ̂i0 − γi0)= ψ̃i + T−1/2Bγi + T−1R2i� (4.2)

where γ̂i0 := γ̂i(θ0),

ψ̃i = −
(
Hαi
Pαi

)
T−1/2

T∑
t=1

g(zit)
d→N(0� Vi)�

n−1/2 ∑n
i=1 ψ̃i

d→ N(0� Ē[Vi]), Bγi = BIγi + BGγi + BΩγi + BWγi , and sup1≤i≤n R2i = oP(
√
T),

with, forΩαi�j = ∂Ωαi/∂αi�j ,
Vi = diag(Σαi�Pαi)�

BIγi =
(
BIαi
BIλi

)
=

(
Hαi
Pαi

)(
−

dα∑
j=1

Gααi�jΣαi/2 +E[
Gαi(zit)Hαig(zi�t−j)

])
�

BGγi =
(
BGαi
BGλi

)
=

(
−Σαi
H ′
αi

) ∞∑
j=0

E
[
Gαi(zit)

′Pαig(zi�t−j)
]
�

BΩγi =
(
BΩαi
BΩλi

)
=

(
Hαi
Pαi

) ∞∑
j=0

E
[
g(zit)g(zit)

′Pαig(zi�t−j)
]
�

BWγi =
(
BWαi
BWλi

)
=

(
Hαi
Pαi

)
dα∑
j=1

Ωαi�j
(
HW ′
αi�j

−H ′
αi�j

)
�

Theorem 4 (Limit Distribution for Two-Step Estimators of Common Parameters). Un-
der Conditions 1–6,

√
nT(θ̂− θ0)

d→ −J−1
s N(κBs� Js)�

where Js = Ē[G′
θi
PαiGθi ], Bs = Ē[BBsi + BCsi], BBsi = −G′

θi
[BIλi + BGλi + BΩλi + BWλi ], and

BCsi =
∑∞
j=0E[Gθi(zit)′Pαig(zi�t−j)]. The expressions for BIλi , B

G
λi

, BΩλi , and BWλi are given in
Lemma 2.

Theorem 4 establishes that one iteration of the GMM procedure not only improves
asymptotic efficiency by reducing the variance of the influence function, but also re-
moves the variance and nonoptimal weighting matrices components from the bias. The
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higher-order bias of the estimator of the individual effects, BBλ , now has four compo-
nents, as in Newey and Smith (2004). These components correspond to the asymptotic
bias for a GMM estimator with the optimal score (BIλ), the bias arising from estimation
of Gαi (BGλ ), the bias arising from estimation of Ωi (BΩλ ), and the bias arising from the
choice of the preliminary first step estimator (BWλ ). An additional iteration of the GMM
estimator removes the term BWλ .

The general procedure for deriving the asymptotic distribution of the FE-GMM esti-
mators consists of several expansions. First, we derive higher-order asymptotic expan-
sions for the estimators of the individual effects, with the common parameter fixed at
its true value θ0. Next, we obtain the asymptotic distribution for the profile score of the
common parameter at θ0 using the expansions of the estimators of the individual effects.
Finally, we derive the asymptotic distribution of the estimator for the common param-
eter by multiplying the asymptotic distribution of the score by the limit profile Jacobian
matrix. This procedure is detailed in the Appendix. Here we characterize the asymptotic
bias in a linear correlated random-coefficient model with endogenous regressors. Moti-
vated by the numerical and empirical examples that follow, we consider a model where
only the variables with a common parameter are endogenous and we allow for the mo-
ment conditions not to be martingale difference sequences.

Example (Correlated Random-Coefficient Model With Endogenous Regressors). We
consider a simplified version of the models in the empirical and numerical examples.
The notation is the same as in the theorems discussed above. The moment condition is

g(zit;θ�αi)=wit
(
yit − x′

1itαi − x′
2itθ

)
�

where wit = (x′
1it �w

′
2it)

′ and zit = (x′
1it � x

′
2it �w

′
2it � yit)

′. That is, only the regressors with
common coefficients are endogenous. Let εit = yit − x′

1itαi0 − x′
2itθ0. To simplify the ex-

pressions for the bias, we assume that εit |wi�αi ∼ i.i.d. (0�σ2
ε) and E[x2itεi�t−j |wi�αi] =

E[x2itεi�t−j] for wi = (wi1� � � � �wiT )
′ and j ∈ {0�±1� � � �}. Under these conditions, the op-

timal weighted matrices are proportional to E[witw′
it], which do not depend on θ0 and

αi0. We can, therefore, obtain the optimal GMM estimator in one step using the sample
averages T−1 ∑T

t=1witw
′
it to estimate the optimal weighting matrices.

In this model, it is straightforward to see that the estimators of the individual effects
have no bias, that is, BW�Iγi = BW�Gγi = BW�1Sγi = 0. By linearity of the first-order conditions

in θ and αi, B
W�V
si = 0. The only source of bias is the correlation between the estimators

of θ and αi. After some straightforward algebra, this bias simplifies to

BW�Csi = −(dg − dα)
∞∑

j=−∞
E[x2itεi�t−j]�

For the limit Jacobian, we find

JWs = Ē{
E

[
x̃2it w̃

′
2it

]
E

[
w̃2it w̃

′
2it

]−1
E

[
w̃2it x̃

′
2it

]}
�

where variables with a tilde indicate residuals of population linear projections of the
corresponding variable on x1it , for example, x̃2it = x2it −E[x2itx

′
1it]E[x1itx

′
1it]−1x1it . The
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expression of the bias is

B(θ0)= −(dg − dα)
(
JWs

)−1
Ē

∞∑
j=−∞

E
[
x̃2it

(
ỹi�t−j − x̃′

2i�t−jθ0
)]
� (4.3)

�

In random-coefficient models the ultimate quantities of interest are often functions
of the data, model parameters, and individual effects. The following corollaries charac-
terize the asymptotic distributions of the fixed effects estimators of these quantities. The
first corollary applies to averages of functions of the data and individual effects such as
average partial effects and average derivatives in nonlinear models, and average elastic-
ities in linear models with variables in levels. Section 6 gives an example of these elas-
ticities. The second corollary applies to averages of smooth functions of the individual
effects including means, variances, and other moments of the distribution of these ef-
fects. Sections 2 and 6 give examples of these functions. We state the results only for
estimators constructed from two-step estimators of the common parameters and indi-
vidual effects. Similar results apply to estimators constructed from one-step estimators.
Both corollaries follow from Lemma 2 and Theorem 4 by the delta method.

Corollary 1 (Asymptotic Distribution for Fixed Effects Averages). Let ζ(z;θ�αi) be a
twice continuously differentiable function in its second and third argument such that
infi Var[ζ(zit)] > 0, ĒE[ζ(zit)2] <∞, ĒE|ζα(zit)|2 <∞, and ĒE|ζθ(zit)|2 <∞, where the
subscripts on ζ denote partial derivatives. Then, under the conditions of Theorem 4, for
some deterministic sequence rnT → ∞ such that rnT =O(√nT)�

rnT (̂ζ − ζ −Bζ/T) d→N(0� Vζ)�

where ζ = ĒE[ζ(zit)],

Bζ = ĒE

[
−

∞∑
j=0

ζαi(zit)
′Hαig(zi�t−j)+ ζαi(zit)′Bαi

+
dα∑
j=1

ζααi�j (zit)
′Σαi/2 − ζβ(zit)′J−1

s Bs

]

for Bαi = BIαi +BGαi +BΩαi +BWαi , and for r2 = limn�T→∞ r2
nT /(nT)�

Vζ = r2ĒE
[
ζαi(zit)

′Σαiζαi(zit)+ ζθ(zit)′J−1
s ζθ(zit)

]
+ lim
n�T→∞

r2
nT

n
ĒE

[(
1
T

T∑
t=1

(
ζ(zit)− ζ))2]

�

Corollary 2 (Asymptotic Distribution for Smooth Functions of Individual Effects). Let
μ(αi) be a twice differentiable function such that Ē[μ(αi0)2] <∞ and Ē|μα(αi0)|2 <∞,
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where the subscripts on μ denote partial derivatives. Then, under the conditions of Theo-
rem 4,

√
n(μ̂−μ) d→N(κBμ�Vμ)�

where μ= Ē[μ(αi0)],

Bμ = Ē
[
μαi(αi0)

′Bαi +
dα∑
j=1

μααi�j (αi0)
′Σαi/2

]

for Bαi = BIαi +BGαi +BΩαi +BWαi , and Vμ = Ē[(μ(αi0)−μ)2].

The convergence rate rnT in Corollary 1 depends on the function ζ(z;θ�αi). For ex-
ample, rnT = √

nT for functions that do not depend on αi such as ζ(z;θ�αi)= c′θ, where
c is a known dθ vector. In general, rnT = √

n for functions that depend on αi. In this case
r2 = 0 and the first two terms of Vζ drop out. Corollary 2 is an important special case
of Corollary 1. We present it separately because the asymptotic bias and variance have
simplified expressions.

5. Bias corrections

The FE-GMM estimators of common parameters, while consistent, have bias in the
asymptotic distributions under sequences where n and T grow at the same rate. These
sequences provide a good approximation to the finite-sample behavior of the estimators
in empirical applications where the time dimension is moderately large. The presence
of bias invalidates any asymptotic inference because the bias is of the same order as
the standard deviation. In this section, we describe bias correction methods to adjust
the asymptotic distribution of the FE-GMM estimators of the common parameter and
smooth functions of the data, model parameters, and individual effects. All the correc-
tions considered are analytical. Alternative corrections based on variations of the jack-
knife can be implemented using the approaches described in Hahn and Newey (2004)
and Dhaene and Jochmans (2010).9

We consider three analytical methods that differ in whether the bias is corrected
from the estimator or from the first-order conditions, and in whether the correction is
one-step or iterated for methods that correct the bias from the estimator. All these meth-
ods reduce the order of the asymptotic bias without increasing the asymptotic variance.
They are based on analytical estimators of the bias of the profile score Bs and the profile
Jacobian matrix Js . Since these quantities include cross sectional and time series means
Ē and E evaluated at the true parameter values for the common parameter and indi-
vidual effects, they are estimated by the corresponding cross sectional and time series
sample averages evaluated at the FE-GMM estimates. Thus, for any function of the data,

9Hahn, Kuersteiner, and Newey (2004) showed that analytical, bootstrap, and jackknife bias correction
methods are asymptotically equivalent up to third order for MLE. We conjecture that the same result applies
to GMM estimators, but the proof is beyond the scope of this paper.
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common parameter and individual effects fit(θ�αi), let f̂it (θ) = fit(θ� α̂i(θ)), f̂i(θ) =
Ê[f̂it (θ)] = T−1 ∑T

t=1 f̂it (θ), and f̂ (θ) = ̂̄E[f̂i(θ)] = n−1 ∑n
i=1 f̂i(θ). Next, define Σ̂αi(θ) =

[Ĝαi(θ)′Ω̂−1
i Ĝαi (θ)]−1, Ĥαi(θ) = Σ̂αi(θ)Ĝαi(θ)

′Ω̂−1
i , and P̂αi(θ) = Ω̂−1

i Ĝαi (θ)Ĥαi(θ). To
simplify the presentation, we only give explicit formulas for FE-GMM three-step esti-
mators in the main text. We give the expressions for one- and two-step estimators in the
Appendix. Let

B̂(θ)= −Ĵs(θ)−1B̂s(θ)� B̂s(θ)= ̂̄E[
B̂Bsi(θ)+ B̂Csi(θ)

]
�

Ĵs(θ)= ̂̄E[
Ĝθi(θ)

′P̂αi(θ)Ĝθi(θ)
]
�

where B̂Bsi(θ)= −Ĝθi(θ)′[B̂Iλi(θ)+ B̂Gλi(θ)+ B̂Ωλi(θ)+ B̂Wλi (θ)],

B̂Iλi(θ)= −P̂αi (θ)
dα∑
j=1

Ĝααi�j (θ)Σ̂αi(θ)/2

+ P̂αi(θ)
�∑
j=0

T−1
T∑

t=j+1

Ĝαit (θ)Ĥαi(θ)ĝi�t−j(θ)�

B̂Gλi(θ)= Ĥαi(θ)′
∞∑
j=0

T−1
T∑

t=j+1

Ĝαit (θ)
′P̂αi(θ)ĝi�t−j(θ)�

B̂Ωλi(θ)= P̂αi(θ)
�∑
j=0

T−1
T∑

t=j+1

ĝit (θ)ĝit(θ)
′P̂αi(θ)ĝi�t−j(θ)�

and B̂Csi(θ) = T−1 ∑�
j=0

∑T
t=j+1 Ĝθit (θ)

′P̂αi(θ)ĝi�t−j(θ). In the previous expressions, the
spectral time series averages that involve an infinite number of terms are trimmed. The
trimming parameter � is a positive bandwidth that needs to be chosen such that �→ ∞
and �/T → 0 as T → ∞ (Hahn and Kuersteiner (2011)).

The one-step correction of the estimator subtracts an estimator of the expression of
the asymptotic bias from the estimator of the common parameter. Using the expressions
defined above evaluated at θ̂, the bias-corrected estimator is

θ̂BC = θ̂− B̂(θ̂)/T� (5.1)

This bias correction is straightforward to implement because it only requires one opti-
mization. The iterated correction is equivalent to solving the nonlinear equation

θ̂IBC = θ̂− B̂
(
θ̂IBC)

/T� (5.2)

When θ+ B̂(θ) is invertible in θ, it is possible to obtain a closed-form solution to the pre-
vious equation.10 Otherwise, an iterative procedure is needed. The score bias-corrected
(SBC) estimator is the solution to the estimating equation

ŝ
(
θ̂SBC) − B̂s

(
θ̂SBC)

/T = 0� (5.3)

10See MacKinnon and Smith (1998) for a comparison of one-step and iterated bias correction methods.
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This procedure, while computationally more intensive, has the attractive feature that
both estimator and bias are obtained simultaneously. Hahn and Newey (2004) showed
that fully iterated bias-corrected (IBC) estimators solve approximated bias-corrected
first-order conditions. The IBC and SBC are equivalent if the first-order conditions are
linear in θ.

Example (Correlated Random-Coefficient Model With Endogenous Regressors). The
previous methods can be illustrated in the correlated random-coefficient model exam-
ple in Section 4. Here, the fixed effects GMM estimators have closed forms

α̂i(θ)=
(

T∑
t=1

x1itx
′
1it

)−1 T∑
t=1

x1it
(
yit − x′

2itθ
)

and

θ̂= (
ĴWs

)−1
n∑
i=1

[
T∑
t=1

x̃2it w̃
′
2it

(
T∑
t=1

w̃2it w̃
′
2it

)−1 T∑
t=1

w̃2it ỹit

]
�

where ĴWs = ∑n
i=1[

∑T
t=1 x̃2it w̃

′
2it (

∑T
t=1 w̃2it w̃

′
2it )

−1 ∑T
t=1 w̃2it x̃

′
2it] and the variables with a

tilde now indicate residuals of sample linear projections of the corresponding variable
on x1it , for example, x̃2it = x2it − ∑T

t=1 x2itx
′
1it (

∑T
t=1 x1itx

′
1it )

−1x1it .
We can estimate the bias of θ̂ from the analytic formula in expression (4.3), replacing

population by sample moments, replacing θ0 by θ̂, and trimming the number of terms
in the spectral expectation:

B̂(θ̂)= −(dg − dα)
(
ĴWs

)−1
n∑
i=1

�∑
j=−�

min(T�T+j)∑
t=max(1�j+1)

x̃2it
(
ỹi�t−j − x̃′

2i�t−jθ̂
)
�

The one-step bias-corrected estimates of the common parameter θ and the average of
the individual parameter α := E[αi] are

θ̂BC = θ̂− B̂(θ̂)/T� α̂BC = n−1
n∑
i=1

α̂i
(
θ̂BC)

�

The iterated bias correction estimator can be derived analytically by solving

θ̂IBC = θ̂− B̂
(
θ̂IBC)

/T�

which has the closed-form solution

θ̂IBC =
[
Idθ + (dg − dα)

(
ĴWs

)−1
n∑
i=1

�∑
j=−�

min(T�T+j)∑
t=max(1�j+1)

x̃2it x̃
′
2i�t−j/

(
nT 2)]−1

×
[
θ̂+ (dg − dα)

(
ĴWs

)−1
n∑
i=1

�∑
j=−�

min(T�T+j)∑
t=max(1�j+1)

x̃2it ỹi�t−j/
(
nT 2)]�
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The score bias correction is the same as the iterated correction because the first-order
conditions are linear in θ. �

The bias correction methods described above yield normal asymptotic distributions
centered at the true parameter value for panels where n and T grow at the same rate
with the sample size. This result is formally stated in Theorem 5, which establishes that
all the methods are asymptotically equivalent, up to first order.

Theorem 5 (Limit Distribution of Bias-Corrected FE-GMM). Assume that
√
nT(B̂s(θ̄)−

Bs)/T
p→ 0 and

√
nT(Ĵs(θ̄) − Js)/T

p→ 0 for some θ̄ = θ0 + OP((nT)
−1/2). Under Condi-

tions 1–6, for C ∈ {BC�SBC� IBC},

√
nT

(
θ̂C − θ0

) d→N
(
0� J−1

s

)
� (5.4)

where θ̂BC, θ̂IBC, and θ̂SBC are defined in (5.1), (5.2), and (5.3), and Js = Ē[G′
θi
PαiGθi ].

The convergence condition for the estimators of Bs and Js holds for sample analogs
evaluated at the initial FE-GMM one-step or two-step estimators if the trimming se-
quence is chosen such that �→ ∞ and �/T → 0 as T → ∞. Theorem 5 also shows that all
the bias-corrected estimators considered are first-order asymptotically efficient, since
their variances achieve the semiparametric efficiency bound for the common parame-
ters in this model; see Chamberlain (1992).

The following corollaries give bias-corrected estimators for averages of the data and
individual effects and for moments of the individual effects, together with the limit dis-
tributions of these estimators and consistent estimators of their asymptotic variances.
To construct the corrections, we use bias-corrected estimators of the common parame-
ter. The corollaries then follow from Lemma 2 and Theorem 5 by the delta method. We
use the same notation as in the estimation of the bias of the common parameters above
to denote the estimators of the components of the bias and variance.

Corollary 3 (Bias Correction for Fixed Effects Averages). Let ζ(z;θ�αi) be a twice
continuously differentiable function in its second and third argument such that
infi Var[ζ(zit)] > 0, ĒE[ζ(zit)2] < ∞, ĒE[ζα(zit)2] < ∞, and ĒE|ζθ(zit)|2 < ∞. For C ∈
{BC�SBC� IBC}, let ζ̂C = ζ̂(θ̂C)− B̂ζ(θ̂C)/T , where

B̂ζ(θ) = ̂̄E[
�∑
j=0

1
T

T∑
t=j+1

ζ̂αit (θ)
′̂̃ψαi�t−j (θ)

+ ζ̂αi (θ)′B̂αi(θ)+
dα∑
j=1

ζ̂ααi�j (θ)
′Σ̂αi(θ)/2

]
�

where � is a positive bandwidth such that �→ ∞ and �/T → 0 as T → ∞. Then, under
the conditions of Theorem 5,

rnT
(̂
ζC − ζ) d→N(0� Vζ)�
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where rnT , ζ, and Vζ are defined in Corollary 1. Also, for any θ̄ = θ0 +OP((nT)
−1/2) and

ζ̄ = ζ +OP(r−1
nT ),

V̂ζ = r2
nT

nT
̂̄E{
Ê

[̂
ζαit (θ̄)

′Σ̂αi(θ̄)̂ζαit (θ̄)+ ζ̂θit (θ̄)′Ĵs(θ̄)−1ζ̂θit (θ̄)
] + T (

Ê
[̂
ζit(θ̄)− ζ̄])2}

is a consistent estimator for Vζ .

Corollary 4 (Bias Correction for Smooth Functions of Individual Effects). Let μ(αi)
be a twice differentiable function such that Ē[μ(αi0)2] < ∞ and Ē|μα(αi0)|2 < ∞. For

C ∈ {BC�SBC� IBC}, let μ̂C = ̂̄E[μ̂i(θ̂C)]− B̂μ(θ̂C)/T , where μ̂i(θ)= μ(α̂i(θ)) and B̂μ(θ)=̂̄E[μ̂αi (θ)′B̂αi(θ)+ ∑dα
j=1 μ̂ααi�j (θ)

′Σ̂αi(θ)/2]. Then, under the conditions of Theorem 5,

√
n
(
μ̂C −μ) d→N(0� Vμ)�

where μ= Ē[μ(αi0)] and Vμ = Ē[(μ(αi0)−μ)2]. Also, for any θ̄= θ0 +OP((nT)−1/2) and
μ̄= μ+OP(n−1/2),

V̂μ = ̂̄E[{
μ̂i(θ̄)− μ̄}2 + μ̂αi (θ̄)′Σ̂αi (θ̄)μ̂αi(θ̄)/T

]
(5.5)

is a consistent estimator for Vμ. The second term in (5.5) is included to improve the finite-
sample properties of the estimator in short panels.

6. Empirical example

We illustrate the new estimators with an empirical example based on the classical
cigarette demand study of Becker, Grossman, and Murphy (1994) (BGM hereafter).
Cigarettes are addictive goods. To account for this addictive nature, early cigarette de-
mand studies included lags of consumption as explanatory variables (e.g., Baltagi and
Levin (1986)). This approach, however, ignores that rational or forward-looking con-
sumers take into account the effect of today’s consumption decision on future con-
sumption decisions. Becker and Murphy (1988) developed a model of rational addiction
where expected changes in future prices affect the current consumption. BGM empir-
ically tested this model using a linear structural demand function based on quadratic
utility assumptions. The demand function includes both future and past consumption
as determinants of current demand, and the future price affects the current demand
only through future consumption. They found that the effect of future consumption on
current consumption is significant, which they took as evidence in favor of the rational
model.

Most of the empirical studies in this literature use yearly state-level panel data sets.
They include fixed effects to control for additive heterogeneity at the state level, and
use leads and lags of cigarette prices and taxes as instruments for leads and lags of con-
sumption. These studies, however, do not consider possible nonadditive heterogeneity
in price effects across states. There are multiple reasons why there may be heterogeneity
in the price effect across states correlated with the price level. First, the considerable dif-
ferences in income, industrial, ethnic, and religious composition at the interstate level
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can translate into different tastes and policies toward cigarettes. Second, from the per-
spective of the theoretical model developed by Becker and Murphy (1988), the price ef-
fect is a function of the marginal utility of wealth that varies across states and depends
on cigarette prices. If the price effect is heterogenous and correlated with the price level,
a fixed-coefficient specification may produce substantial bias in estimating the average
elasticity of cigarette consumption because the between variation of price is much larger
than the within variation. Wangen (2004) gave additional theoretical reasons against a
fixed-coefficient specification for the demand function in this application.

For the demand function, we consider the linear specification

Cit = α0i + α1iPit + θ1Ci�t−1 + θ2Ci�t+1 +X ′
itδ+ εit� (6.1)

where Cit is cigarette consumption in state i at time t measured by per capita sales in
packs, α0i is an additive state effect, α1i is a state-specific price coefficient, Pit is the
price in 1982–1984 dollars, andXit is a vector of covariates that includes income, various
measures of incentive for smuggling across states, and year dummies. We estimate the
model parameters using OLS and IV methods with both a fixed coefficient for price and
a random coefficient for price. The data set, consisting of an unbalanced panel of 50 U.S.
states and the district of Columbia over the years 1957 to 1994, is the same as in Fenn,
Antonovitz, and Schroeter (2001). The set of instruments for Ci�t−1 and Ci�t+1 in the IV
estimators is the same as in specification 3 of BGM and includes Xit , Pit , Pi�t−1, Pi�t+1,
Taxit , Taxi�t−1, and Taxi�t+1, where Taxit is the state excise tax for cigarettes in 1982–1984
dollars.

Table 1 reports estimates of coefficients and demand elasticities. We focus on the
coefficients of the key variables, namely Pit , Ci�t−1, and Ci�t+1. Throughout the table, FC
refers to the fixed-coefficient specification with α1i = α1 and RC refers to the random-
coefficient specification in equation (6.1). BC and IBC refer to estimates after bias cor-
rection and iterated bias correction, respectively. Demand elasticities are calculated us-
ing the expressions in Appendix A of BGM. They are functions of Cit ,Pit , α1i, θ1, and θ2,
linear in α1i. For random-coefficient estimators, we report the mean of individual elas-
ticities, that is,

ζ̂h = 1
nT

n∑
i=1

T∑
t=1

ζh(zit; θ̂� α̂i)�

where ζh(zit;θ�αi) = ∂ logCit(h)/∂ logPit(h) are price elasticities at different time hori-
zons h. Standard errors for the elasticities are obtained by the delta method as described
in Corollary 3. For bias-corrected RC estimators, the standard errors use bias-corrected
estimates of θ and αi.

As BGM did, we find that OLS estimates substantially differ from their IV counter-
parts. IV-FC underestimates the elasticities relative to IV-RC. For example, the long-run
elasticity estimate is −0�70 with IV-FC, whereas it is −0�88 with IV-RC. This difference is
also pronounced for short-run elasticities, where the IV-RC estimates are more than 25%
larger than the IV-FC estimates. We observe the same pattern throughout the table for
every elasticity. The bias comes from both the estimation of the common parameter θ2
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Table 1. Estimates of rational addiction model for cigarette demand.

OLS-RC IV-RC

OLS-FC IV-FC NBC BC IBC NBC BC IBC

Coefficients
(Mean) Pt −9�58 −34�10 −13�49 −13�58 −13�26 −36�39 −31�26 −31�26

(1�86) (4�10) (3�55) (3�55) (3�55) (4�85) (4�62) (4�64)

(Std. dev.) Pt 4�35 4�22 4�07 12�86 10�45 10�60
(0�98) (1�02) (1�03) (2�35) (2�13) (2�15)

Ct−1 0�49 0�45 0�48 0�48 0�48 0�44 0�44 0�45
(0�01) (0�06) (0�04) (0�04) (0�04) (0�04) (0�04) (0�04)

Ct+1 0�44 0�17 0�44 0�43 0�44 0�23 0�29 0�27
(0�01) (0�07) (0�04) (0�04) (0�04) (0�05) (0�05) (0�05)

Price elasticities
Long run −1�05 −0�70 −1�30 −1�31 −1�28 −0�88 −0�91 −0�90

(0�24) (0�12) (0�28) (0�28) (0�28) (0�09) (0�10) (0�10)

Own price −0�20 −0�32 −0�27 −0�27 −0�27 −0�38 −0�35 −0�35
(anticipated) (0�04) (0�04) (0�06) (0�06) (0�06) (0�04) (0�04) (0�04)

Own price −0�11 −0�29 −0�15 −0�16 −0�15 −0�33 −0�29 −0�29
(unanticipated) (0�02) (0�03) (0�04) (0�04) (0�04) (0�04) (0�04) (0�04)

Future price −0�07 −0�05 −0�10 −0�10 −0�09 −0�09 −0�10 −0�09
(unanticipated) (0�01) (0�03) (0�02) (0�02) (0�02) (0�02) (0�02) (0�02)

Past price −0�08 −0�14 −0�11 −0�11 −0�10 −0�16 −0�15 −0�15
(unanticipated) (0�01) (0�02) (0�03) (0�02) (0�03) (0�02) (0�02) (0�02)

Short run −0�30 −0�35 −0�41 −0�41 −0�40 −0�44 −0�44 −0�43
(0�05) (0�06) (0�12) (0�12) (0�12) (0�06) (0�06) (0�06)

Note: RC and FC refer to the random and the fixed-coefficient model. NBC, BC, and IBC refer to no bias correction, bias
correction, and iterated bias correction estimates. Standard errors are given in parentheses.

and the mean of the individual-specific parameter E[α1i]. The bias corrections increase
the coefficient of future consumption Ci�t+1 and reduce the absolute value of the mean
of the price coefficient. Moreover, they have a significant impact on the estimator of
dispersion of the price coefficient. The uncorrected estimates of the standard deviation
are more than 20% larger than their bias-corrected counterparts. In the Appendix, we
show through a Monte Carlo experiment calibrated to this empirical example that the
bias is generally large for dispersion parameters and the bias corrections are effective
in reducing this bias. As a consequence of shrinking the estimates of the dispersion of
α1i, we obtain smaller standard errors for the estimates of E[α1i] throughout the table.
In the Monte Carlo experiment, we also find that this correction in the standard errors
provides improved inference.

7. Conclusion

This paper introduces a new class of fixed effects GMM estimators for panel data
models with unrestricted nonadditive heterogeneity and endogenous regressors. Bias
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correction methods are developed because these estimators suffer from the inciden-
tal parameters problem. Other estimators based on moment conditions, like the class
of generalized empirical likelihood (GEL) estimators, can be analyzed using a simi-
lar methodology. An attractive alternative framework for estimation and inference in
random-coefficient models is a flexible Bayesian approach. It would be interesting to
explore whether there are connections between moments of posterior distributions in
the Bayesian approach and the fixed effects estimators considered in the paper. Another
interesting extension would be to find bias reducing priors in the GMM framework simi-
lar to those characterized by Arellano and Bonhomme (2009) in the MLE framework. We
leave these extensions to future research.
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