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This paper develops methods for assessing the sensitivity of empirical conclu-
sions regarding conditional distributions to departures from the missing at ran-
dom (MAR) assumption. We index the degree of nonignorable selection governing
the missing data process by the maximal Kolmogorov–Smirnov distance between
the distributions of missing and observed outcomes across all values of the co-
variates. Sharp bounds on minimum mean square approximations to conditional
quantiles are derived as a function of the nominal level of selection considered in
the sensitivity analysis and a weighted bootstrap procedure is developed for con-
ducting inference. Using these techniques, we conduct an empirical assessment
of the sensitivity of observed earnings patterns in U.S. Census data to deviations
from the MAR assumption. We find that the well documented increase in the re-
turns to schooling between 1980 and 1990 is relatively robust to deviations from
the missing at random assumption except at the lowest quantiles of the distribu-
tion, but that conclusions regarding heterogeneity in returns and changes in the
returns function between 1990 and 2000 are very sensitive to departures from ig-
norability.
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1. Introduction

Despite major advances in the design and collection of survey and administrative data,
missing and incomplete records remain a pervasive feature of virtually every modern
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economic data set. Hirsch and Schumacher (2004), for instance, find that nearly 30% of
the earnings observations in the Outgoing Rotation Groups of the Current Population
Survey (CPS) are imputed. Similar allocation rates are present in other major earnings
sources such as the March CPS and Decennial Census, with the problem growing worse
in more recent years.

The dominant framework for dealing with missing data has been to assume that
it is “missing at random” (Rubin (1976)) or “ignorable” conditional on observable de-
mographics; an assumption whose popularity owes more to convenience than plausi-
bility. Even in settings where it is reasonable to believe that nonresponse is approxi-
mately ignorable, the prevalence of missing values in modern economic data suggests
that economists ought to assess the sensitivity of their conclusions to small deviations
from this assumption.

Previous work on nonignorable missing data processes has either relied upon para-
metric models of nonresponse in conjunction with exclusion restrictions to obtain point
identification (Greenlees, Reece, and Zieschang (1982) and Lillard, Smith, and Welch
(1986)) or considered the “worst case” bounds on population moments that result when
all assumptions regarding the missing data process are abandoned (Manski (1994),
Manski (2003)). Neither approach has garnered much popularity.1 It is typically quite
difficult to find variables that shift the probability of nonresponse but are uncorrelated
with population outcomes. And for most applied problems, the worst case bounds are
overly conservative in the sense that they consider missing data mechanisms that the
majority of researchers would consider to be implausible in modern data sets.

Proponents of the bounding approach are well aware of the fact that the worst case
bounds may be conservative. As Horowitz and Manski (2006) state, “an especially ap-
pealing feature of conservative analysis is that it enables establishment of a domain
of consensus among researchers who may hold disparate beliefs about what assump-
tions are appropriate.” However, when this domain of consensus proves uninformative,
some researchers may wish to consider stronger assumptions. Thus, a complementary
approach is to consider a continuum of assumptions ordered from strongest (ignorabil-
ity) to weakest (worst case bounds), and to report the conclusions obtained under each
one. In this manner, consumers of economic research may draw their own (potentially
disparate) inferences, depending on the strength of the assumptions they are willing to
entertain.

We propose here a feasible version of such an approach for use in settings where
one lacks prior knowledge of the missing data mechanism. Rather than ask what can be
learned about the parameters of interest given assumptions on the missing data pro-
cess, we investigate the level of nonignorable selection necessary to undermine one’s
conclusions regarding the conditional distribution of the data obtained under a miss-
ing at random (MAR) assumption. We do so by making use of a nonparametric measure
of selection: the maximal Kolmogorov–Smirnov (KS) distance between the distributions
of missing and observed outcomes across all values of the covariates. The KS distance

1See DiNardo, McCrary, and Sanbonmatsu (2006) for an applied example comparing these two ap-
proaches.
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yields a natural parameterization of deviations from ignorability, with a distance of 0
corresponding to MAR and a distance of 1 encompassing the totally unrestricted miss-
ing data processes considered in Manski (1994). Between these extremes lies a contin-
uum of selection mechanisms that may be studied to determine a critical level of selec-
tion above which conclusions obtained under an analysis predicated on MAR may be
overturned. By reporting the minimal level of selection necessary to undermine a hy-
pothesis, we allow readers to decide for themselves which inferences to draw based on
their beliefs about the selection process.2

To enable such an analysis, we begin by deriving sharp bounds on the conditional
quantile function (CQF) under nominal restrictions on the degree of selection present.
We focus on the commonly encountered setting where outcome data are missing and
covariates are discrete. To facilitate the analysis of data sets with many covariates, results
are also developed that summarize the conclusions that can be drawn regarding linear
parametric approximations to the underlying nonparametric CQF of the sort considered
by Chamberlain (1994). When point identification of the CQF fails due to the presence
of missing data, the identified set of corresponding best linear approximations consists
of all elements of the parametric family that provide a minimum mean square approxi-
mation to some function lying within the CQF bounds.

We obtain sharp bounds on the parameters that govern the linear approximation
and propose computationally simple estimators for them. We show that these estima-
tors converge in distribution to a Gaussian process indexed by the quantile of interest
and the level of the nominal restriction on selection, and develop a weighted bootstrap
procedure for consistently estimating that distribution. This procedure enables infer-
ence on the coefficients that govern the approximation when considered as an unknown
function of the quantile of interest and the level of the selection bound.

Substantively, these methods allow a determination of the critical level of selection
for which hypotheses regarding conditional quantiles, parametric approximations to
conditional quantiles, or entire conditional distributions cannot be rejected. For ex-
ample, we study the “breakdown” function defined implicitly as the level of selection
necessary for conclusions to be overturned at each quantile. The uniform confidence
region for this function effectively summarizes the differential sensitivity of the entire
conditional distribution to violations of MAR. These techniques substantially extend the
recent econometrics literature on sensitivity analysis (Altonji, Elder, and Taber (2005,
2008), Imbens (2003), Rosenbaum and Rubin (1983), Rosenbaum (2002)), most of which
has focused on the sensitivity of scalar treatment effect estimates to confounding influ-
ences, typically by using assumed parametric models of selection.

Having established our inferential procedures, we turn to an empirical assessment of
the sensitivity of heavily studied patterns in the conditional distribution of U.S. wages
to deviations from the MAR assumption. We begin by revisiting the results of Angrist,
Chernozhukov, and Fernández-Val (2006) regarding changes across Decennial Censuses

2Our approach has parallels with classical hypothesis testing. It is common practice to report p-values
rather than the binary results of statistical tests, because readers may differ in the balance they wish to
strike between type I and type II errors. By reporting p-values, the researcher leaves it to readers to strike
this balance on their own.
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in the quantile-specific returns to schooling. Weekly earnings information is missing
for roughly a quarter of the observations in their study, suggesting the results may be
sensitive to small deviations from ignorability. We show that despite the prevalence of
missing values in the dependent variable, the well documented increase in the returns
to schooling between 1980 and 1990 is relatively robust to deviations from the missing
at random assumption except at the lowest quantiles of the conditional distribution.
However, deterioration in the quality of Decennial Census data renders conclusions re-
garding heterogeneity in returns and changes in the returns function between 1990 and
2000 very sensitive to departures from ignorability at all quantiles. We also show, using a
more flexible model studied by Lemieux (2006), that the apparent convexification of the
earnings–education profile between 1980 and 2000 is robust to modest deviations from
MAR, while changes in the wage structure at lower quantiles are more easily obscured
by selection.

To gauge the practical relevance of these sensitivity results, we analyze a sample of
workers from the 1973 Current Population Survey for whom IRS earnings records are
available. This sample allows us to observe the earnings of CPS participants who, for
one reason or another, failed to provide valid earnings information to the CPS. We show
that IRS earnings predict nonresponse to the CPS within demographic covariate bins,
with very high and very low earning individuals most likely to have invalid CPS earnings
records. By measuring the degree of selection using our proposed KS metric, we find
significant deviations from ignorability with patterns of selection that vary substantially
across demographic groups. Given recent trends in survey imputation rates, these find-
ings suggest economists’ knowledge of the location and shape of conditional earnings
distributions in the United States may be more tentative than previously supposed.

The remainder of the paper is structured as follows: Section 2 describes our index of
selection and our general approach to assessing sensitivity. Section 3 develops our ap-
proach to assessing the sensitivity of parametric approximations to conditional quan-
tiles. Section 4 obtains the results necessary for estimation and inference on the bounds
provided by restrictions on the selection process. In Section 5, we present our empirical
study, and we briefly conclude in Section 6. Appendixes are available in a supplementary
file on the journal website, http://qeconomics.org/supp/176/supplement.pdf.

2. Assessing sensitivity

Consider the random variables (Y�X�D) with joint distribution F , where Y ∈ R, X ∈ Rl,
and D ∈ {0�1} is a dummy variable that equals 1 if Y is observable and 0 otherwise, that
is, only (YD�X�D) is observable. Denote the distribution of Y given X and of Y given
X and D by

Fy|x(c) ≡ P(Y ≤ c|X = x)� Fy|d�x(c) ≡ P(Y ≤ c|D= d�X = x)� (1)

where d ∈ {0�1}, and further define the probability of Y being observed conditional on
X to be

p(x) ≡ P(D = 1|X = x)� (2)

http://qeconomics.org/supp/176/supplement.pdf
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In conducting a sensitivity analysis, the researcher seeks to assess how the identified
features of Fy|x depend on alternative assumptions regarding the process that gener-
ates D. In particular, we concern ourselves with the sensitivity of conclusions regarding
q(τ|X), the conditional τ-quantile of Y given X , which is often of more direct interest
than the distribution function itself. Toward this end, we impose the following assump-
tions on the data generating process.

Assumption 2.1. (i) X ∈ Rl has finite support X ; (ii) Fy|d�x(c) is continuous and strictly
increasing at all c such that 0 <Fy|d�x(c) < 1; (iii) the observable variables are (YD�D�X).

The discrete support requirement in Assumption 2.1(i) simplifies inference, as it ob-
viates the need to employ nonparametric estimators of conditional quantiles. While this
assumption may be restrictive in some environments, it is still widely applicable as il-
lustrated in our study of quantile-specific returns to education in Section 5. It is also
important to emphasize that Assumption 2.1(i) is not necessary for our identification
results, but only for our discussion of inference. Assumption 2.1(ii) ensures that for any
0 < τ < 1, the τ-conditional quantile of Y given X is uniquely defined.

2.1 Index of selection

Most previous work on sensitivity analysis (e.g., Rosenbaum and Rubin (1983), Altonji,
Elder, and Taber (2005)) has relied on parametric models of selection. While potentially
appropriate in cases where particular deviations from ignorability are of interest, such
approaches risk understating sensitivity by implicitly ruling out a wide class of selection
mechanisms. We now develop an alternative approach designed to allow an assessment
of sensitivity to arbitrary deviations from ignorability that retains much of the parsi-
mony of parametric methods. Specifically, we propose to study a nonparametric class of
selection models indexed by a scalar measure of the deviations from MAR they generate.
A sensitivity analysis may then be conducted by considering the conclusions that can be
drawn under alternative levels of the selection index, with particular attention devoted
to determination of the threshold level of selection necessary to undermine conclusions
obtained under an ignorability assumption.

Since ignorability occurs when Fy|1�x equals Fy|0�x, it is natural to measure deviations
from MAR in terms of the distance between these two distributions. We propose as an
index of selection the maximal Kolmogorov–Smirnov (KS) distance between Fy|1�x and
Fy|0�x across all values of the covariates.3 Thus, for X , the support of X , we define the
selection metric

S(F) ≡ sup
x∈X

sup
c∈R

∣∣Fy|1�x(c)− Fy|0�x(c)
∣∣� (3)

Note that the missing at random assumption may be equivalently stated as S(F) = 0,
while S(F) = 1 corresponds to severe forms of selection where the supports of random

3The Kolmogorov–Smirnov distance between two distributions H1(·) and H2(·) is defined as
supc∈R |H1(c)−H2(c)|.
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variables distributed according to Fy|1�x and Fy|0�x fail to intersect for some x ∈ X . For
illustrative purposes, Appendix A (available in the supplementary file) provides a nu-
merical example that maps the parameters of a bivariate normal selection model into
values of S(F), and maps plots of the corresponding observed and missing data cumu-
lative distribution functions (CDFs).

By indexing a selection mechanism according to the discrepancy S(F) it generates,
we effectively summarize the difficulties it implies for identifying Fy|x. In what follows,
we aim to examine what can be learned about Fy|x under a hypothetical bound on the
degree of selection present as measured by S(F). Specifically, we study what conclusions
can be obtained under the nominal restriction

S(F) ≤ k� (4)

We emphasize that knowledge of a true value of k for which (4) holds is not assumed.
Rather, we propose to examine the conclusions that can be drawn when we presume
the severity of selection, as measured by S(F), to be no larger than k. This hypothet-
ical restriction will be shown to yield sharp tractable bounds on both the conditional
distribution (Fy|x) and the quantile (q(·|x)) functions. Such bounds will, in turn, enable
us to determine the level of selection k necessary to overturn conclusions drawn under
MAR.

2.2 Interpretation of k

Our motivation for working with S(F) rather than a parametric selection model is that
researchers generally lack prior knowledge of the selection process. It is useful, how-
ever, to have in mind a simple class of nonparametric data generating processes that
provide an intuitive understanding of what the value k in (4) represents. Toward this
end, we borrow from the robust statistics literature (e.g., Tukey (1960), Huber (1964)) in
modeling departures from ignorability as a mixture of missing at random and arbitrary
nonignorable missing data processes.4

Specifically, consider a model where a fraction k of the missing population is dis-
tributed according to an arbitrary CDF F̃y|x, while the remaining fraction 1 − k of that
population are missing at random in the sense that they are distributed according to
Fy|1�x. Succinctly, suppose

Fy|0�x(c) = (1 − k)Fy|1�x(c)+ kF̃y|x(c)� (5)

where F̃y|x is unknown, and (5) holds for all x ∈ X and any c ∈ R. In this setting, we then
have

S(F) = sup
x∈X

sup
c∈R

∣∣Fy|1�x(c)− kF̃y|x(c)− (1 − k)Fy|1�x(c)
∣∣

(6)
= k× sup

x∈X
sup
c∈R

∣∣Fy|1�x(c)− F̃y|x(c)
∣∣�

4We thank an anonymous referee for suggesting this interpretation.
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Hence, if we consider the mixture model in (5) for unknown F̃y|x, then we must allow for
the possibility that S(F) takes any value between 0 and k, as in (4).

Thus, we may interpret the level of k in the restriction S(F) ≤ k as a bound on the
fraction of the missing sample that is not well represented by the observed data distribu-
tion. This heuristic is particularly helpful in establishing a link to the foundational work
on bounds of Manski (1994, 2003). In the presence of missing data, the latter approach
exploits that Fy|0�x(c) ≤ 1 to obtain an upper bound for Fy|x(c) of the form

Fy|x(c) = Fy|1�x(c)×p(x)+ Fy|0�x(c)× (
1 −p(x)

)
(7)

≤ Fy|1�x(c)×p(x)+ (
1 −p(x)

)
�

Heuristically, the upper bound in (7) follows from a “least favorable” configuration
where the entire missing population lies below the point c. By contrast, under the mix-
ture specification,

Fy|x(c) = Fy|1�x(c)×p(x)+ {
(1 − k)Fy|1�x(c)+ kF̃y|x(c)

} × (
1 −p(x)

)
(8)

≤ Fy|1�x(c)× (
1 − k

(
1 −p(x)

)) + k
(
1 −p(x)

)
�

Thus, in this setting we need only worry about a fraction k of the unobserved popula-
tion being below the point c. We can, therefore, interpret k as the proportion of the un-
observed population that is allowed to take the least favorable configuration of Manski
(1994).

Remark 2.1. The mixture interpretation of (5) also provides an interesting link to the
work on “corrupted sampling” of Horowitz and Manski (1995), who derive bounds on
the distribution of Y1 ∈ R in a setting where, for Z ∈ {0�1}, Y2 ∈ R, and

Y = Y1Z +Y2(1 −Z)� (9)

only Y is observed. The resulting identification region for the distribution of Y1 can be
characterized in terms of λ ≡ P(Z = 1), and the authors study “robustness” in terms
of critical levels of λ under which conclusions are as uninformative as when λ = 1. In
our missing data setting, the problematic observations are identified. Hence, it is the
unobserved population that is “corrupted,” as in equation (5). Our index k then plays a
similar role to λ in the corrupted sampling model.

2.3 Conditional quantiles

For q(τ|X), the conditional τ-quantile of Y given X , we now examine what can be
learned about the conditional quantile function q(τ|·) under the nominal restriction

S(F) ≤ k. In the absence of additional restrictions, the conditional quantile function
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ceases to be identified under any deviation from ignorability (k> 0). Nonetheless, q(τ|·)
may still be shown to lie within a nominal identified set. This set consists of the values of
q(τ|·) that would be compatible with the distribution of observables were the putative
restriction S(F) ≤ k known to hold. We qualify such a set as nominal due to the restric-
tion that S(F) ≤ k is part of a hypothetical exercise only.

The following lemma provides a sharp characterization of the nominal identified set.

Lemma 2.1. Suppose Assumption 2.1(ii) and (iii) hold, S(F) ≤ k, and let F−
y|1�x(c) =

F−1
y|1�x(c) if 0 < c < 1, F−

y|1�x(c) = −∞ if c ≤ 0, and F−
y|1�x(c) = ∞ if c ≥ 1. Defining

(qL(τ�k|x)�qU(τ�k|x)) by

qL(τ�k|x) ≡ F−
y|1�x

(
τ − min{τ + kp(x)�1}(1 −p(x))

p(x)

)
� (10)

qU(τ�k|x) ≡ F−
y|1�x

(
τ − max{τ − kp(x)�0}(1 −p(x))

p(x)

)
� (11)

it follows that the identified set for q(τ|·) is C(τ�k) ≡ {θ : X → R :qL(τ�k|·) ≤ θ(·) ≤
qU(τ�k|·)}.

Proof. Letting KS(Fy|1�x�Fy|0�x) ≡ supc |Fy|1�x(c)− Fy|0�x(c)|, we first observe that

KS(Fy|1�x�Fy|0�x)

= 1
p(x)

× sup
c∈R

∣∣Fy|1�x(c)×p(x)+ Fy|0�x(c)× {
1 −p(x)

} − Fy|0�x(c)
∣∣ (12)

= 1
p(x)

× sup
c∈R

∣∣Fy|x(c)− Fy|0�x(c)
∣∣�

Therefore, it immediately follows from the hypothesis S(F) ≤ k and result (12) that

τ = Fy|1�x
(
q(τ|x)) ×p(x)+ Fy|0�x

(
q(τ|x)) × {

1 −p(x)
}

≤ Fy|1�x
(
q(τ|x)) ×p(x)+ min

{
Fy|x

(
q(τ|x)) + kp(x)�1

} × {
1 −p(x)

}
(13)

= Fy|1�x
(
q(τ|x)) ×p(x)+ min

{
τ + kp(x)�1

} × {
1 −p(x)

}
�

By identical manipulations, Fy|1�x(q(τ|x)) × p(x) ≤ τ − max{τ − kp(x)�0} × {1 − p(x)}
and, hence, by inverting Fy|1�x, we conclude that indeed q(τ|·) ∈ C(τ�k).

To prove the bounds are sharp, we aim to show that for every θ ∈ C(τ�k) and every
x ∈ X , there is a F̃y|0�x such that (I) Assumption 2.1(ii) is satisfied, (II) supc |Fy|1�x(c) −
F̃y|0�x(c)| ≤ k, and (III)

Fy|1�x
(
θ(x)

) ×p(x)+ F̃y|0�x
(
θ(x)

) × (
1 −p(x)

) = τ� (14)

Toward this end, first note that for (14) to hold, we must set F̃y|0�x(θ(x)) = κ(x), where

κ(x) ≡ τ − Fy|1�x(θ(x))×p(x)

1 −p(x)
� (15)
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Moreover, since θ ∈ C(τ�k), direct calculation reveals that |κ(x)− Fy|1�x(θ(x))| ≤ k. Fur-
ther assuming κ(x) ≥ Fy|1�x(θ(x)) (the case κ(x) ≤ Fy|1�x(θ(x)) is analogous), we then
note that if

F̃y|0�x(c) ≡ min
{
Fy|1�x(c)+Ψx(c)�1

}
� (16)

then F̃y|0�x will satisfy (I) provided Ψx(c) is continuous, increasing, and satisfies
limc→−∞Ψx(c) = 0, (II) provided 0 ≤ Ψx(c) ≤ κ(x) ≤ k for all c, and (III) if Ψx(θ(x)) =
κ(x) − Fy|1�x(θ(x)). For (a)+ ≡ max{a�0} and K0 > κ(x)/Fy|1�x(θ(x)), these conditions
are satisfied by the function

Ψx(c) ≡ max
{
0�κ(x)− Fy|1�x

(
θ(x)

) −K0
(
Fy|1�x

(
θ(x)

) − Fy|1�x(c)
)
+
}
� (17)

Therefore, the claim of the lemma follows from (16) and (17). �

Figure 1 provides intuition as to why the bounds in Lemma 2.1 are sharp. In this
illustration, the median of the observed distribution Fy|1�x is 0 and p(x) = 1/2. These
parameters yield an upper bound for Fy|0�x(c) ≤ min{1�Fy|1�x(c) + k}—the line termed
“Fy|0�x Upper Bound” in Figure 1. The lower bound qL(0�5|x) is then given by the point at
which the mixture of Fy|1�x and the upper bound for Fy|0�x crosses 1/2, which in Figure 1
is given by −0�5. Any CDF Fy|0�x that equals its upper bound at the point qL(0�5|x) and
whose maximal deviation from Fy|1�x occurs at qL(0�5|x) will then justify qL(0�5|x) as a
possible median. The same logic reveals that a CDF Fy|0�x can be constructed that stays
below its bound and such that the median of Fy|x equals any point in (qL(0�5|x)�0].

Remark 2.2. A key advantage, for our purposes, of employing Kolmogorov–Smirnov
type distances is that they are defined directly in terms of CDFs. Competing metrics such

Figure 1. Illustration with p(x) = 1/2, k= 0�38, and qL(0�5|x)= −0�5.



240 Kline and Santos Quantitative Economics 4 (2013)

as Hellinger or Kullback–Leibler are, by contrast, defined on densities. Consequently, the
quantile bounds that result from employing these alternative metrics do not take simple
analytic forms as in Lemma 2.1.

Remark 2.3. An alternative Kolmogorov–Smirnov type index that delivers tractable
bounds is

W(F) ≡ sup
x∈X

w(x)×
{

sup
c∈R

∣∣Fy|1�x(c)− Fy|0�x(c)
∣∣} (18)

for weights w(x) > 0. The restriction W(F) ≤ k is equivalent to employing the bound
k/w(x) on the Kolmogorov–Smirnov distance between Fy|1�x and Fy|0�x at each x ∈ X .
Thus, the identified set for the conditional quantile q(τ|x) follows from Lemma 2.1 with
k/w(x) in place of k in (10) and (11). This alternative index of selection may prove useful
to researchers who suspect particular forms of heterogeneity in the selection mecha-
nism across covariate values.

2.4 Examples

We conclude this section by illustrating through examples how the bound functions
(qL�qU) can be used to evaluate the sensitivity of conclusions obtained under MAR.
For simplicity, we let X be binary so that the conditional τ-quantile function q(τ|·) takes
only two values.

Example 2.1 (Pointwise Conclusions). Suppose interest centers on whether q(τ|X = 1)
equals q(τ|X = 0) for a specific quantile τ0. A researcher who finds them to differ under
a MAR analysis may easily assess the sensitivity of his conclusion to the presence of se-
lection by employing the functions (qL(τ0|·)�qU(τ0|·)). Concretely, the minimal amount
of selection necessary to overturn the conclusion that the conditional quantiles differ is
given by

k0 ≡ infk :qL(τ0�k|X = 1)− qU(τ0�k|X = 0)
(19)

≤ 0 ≤ qU(τ0�k|X = 1)− qL(τ0�k|X = 0)�

That is, k0 is the minimal level of selection under which the nominal identified sets for
q(τ0|X = 0) and q(τ0|X = 1) contain a common value.

Example 2.2 (Distributional Conclusions). A researcher is interested in whether the
conditional distribution Fy|x=0 first order stochastically dominates Fy|x=1 or, equiva-
lently, whether q(τ|X = 1) ≤ q(τ|X = 0) for all τ ∈ (0�1). She finds under MAR that
q(τ|X = 1) > q(τ|X = 0) at multiple values of τ, leading her to conclude that first order
stochastic dominance does not hold. She may assess what degree of selection is neces-
sary to cast doubt on this conclusion by examining

k0 ≡ infk :qL(τ�k|X = 1)≤ qU(τ�k|X = 0) for all τ ∈ (0�1)� (20)
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Here, k0 is the smallest level of selection for which an element of the identified set for
q(·|X = 1) (qL(·�k0|X = 1)) is everywhere below an element of the identified set for
q(·|X = 0) (qU(·�k0|X = 0)). Thus, k0 is the threshold level of selection under which
Fy|x=0 may first order stochastically dominate Fy|x=1.

Example 2.3 (Breakdown Analysis). A more nuanced sensitivity analysis might exam-
ine what degree of selection is necessary to undermine the conclusion that q(τ|X = 1) �=
q(τ|X = 0) at each specific quantile τ. As in Example 2.1, we can define the quantile-
specific critical level of selection

κ0(τ) ≡ infk : qL(τ�k|X = 1)− qU(τ�k|X = 0)
(21)

≤ 0 ≤ qU(τ�k|X = 1)− qL(τ�k|X = 0)�

By considering κ0(τ) at different values of τ, we implicitly define a “breakdown” function
κ0(·) that reveals the differential sensitivity of the initial conjecture at each quantile τ ∈
(0�1).

3. Parametric modeling

Analysis of the conditional τ-quantile function q(τ|·) and its corresponding nominal
identified set C(τ�k) can be cumbersome when many covariates are present as the re-
sulting bounds will be of high dimension and difficult to visualize. Moreover, it can be
arduous even to state the features of a high dimensional CQF one wishes to examine for
sensitivity. It is convenient in such cases to be able to summarize q(τ|·) using a paramet-
ric model. Failure to acknowledge, however, that the model is simply an approximation
can easily yield misleading conclusions.

Figure 2 illustrates a case where the nominal identified set C(τ�k) possesses an er-
ratic (though perhaps not unusual) shape. The set of linear CQFs that obey the bounds
provide a poor description of this set, covering only a small fraction of its area. Were the
true CQF known to be linear, this reduction in the size of the identified set would be
welcome, the benign result of imposing additional identifying information. But in the
absence of true prior information, these reductions in the size of the identified set are
unwarranted—a phenomenon we term identification by misspecification.

The specter of misspecification leaves the applied researcher with a difficult choice.
One can either conduct a fully nonparametric analysis of the nominal identified set,
which may be difficult to interpret with many covariates, or work with a parametric
set likely to overstate what is known about the CQF. Under identification, this tension
is typically resolved by estimating parametric models that possess an interpretation as
best approximations to the true CQF and adjusting the corresponding inferential meth-
ods accordingly as in Chamberlain (1994) and Angrist, Chernozhukov, and Fernández-
Val (2006). Following Horowitz and Manski (2006), Stoye (2007), and Ponomareva and
Tamer (2009), we extend this approach and develop methods for conducting inference
on the best parametric approximation to the true CQF under partial identification.

We focus on linear models and approximations that minimize a known quadratic
loss function. For S a known measure on X and ES[g(X)] denoting the expectation of
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Figure 2. Linear conditional quantile functions (shaded region) as a subset of the identified set.

g(X) when X is distributed according to S, we define the parameters that govern a best
linear approximation (BLA) as5

β(τ) ≡ arg min
γ∈Rl

ES

[(
q(τ|X)−X ′γ

)2]
� (22)

In cases where the CQF is actually linear in X , it will coincide with its best linear ap-
proximation. Otherwise, the BLA will provide a minimum mean square approximation
to the CQF. In many settings, such an approximation may serve as a relatively accurate
and parsimonious summary of the underlying quantile function.

Lack of identification of the conditional quantile function q(τ|·) due to missing data
implies lack of identification of the parameter β(τ). We therefore consider the set of
parameters that correspond to the best linear approximation to some CQF in C(τ�k).
Formally, we define

P(τ�k)≡
{
β ∈ Rl :β ∈ arg min

γ∈Rl
ES

[(
θ(X)−X ′γ

)2]
for some θ ∈ C(τ�k)

}
� (23)

Figure 3 illustrates the approximation generated by an element of P(τ�k) graphically.
While intuitively appealing, the definition of P(τ�k) is not necessarily the most con-
venient for computational purposes. Fortunately, the choice of quadratic loss and the
characterization of C(τ�k) in Lemma 2.1 imply a tractable alternative representation for
P(τ�k), which we obtain in the following lemma.

5The measure S weights the squared deviations in each covariate bin. Its specification is an inherently
context-specific task that depends entirely on the researcher’s objectives. In Section 4, we weight the devi-
ations by sample size. Other schemes (including equal weighting) may also be of interest in some settings.
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Figure 3. Conditional quantile and its best linear approximation.

Lemma 3.1. If Assumption 2.1(ii) and (iii) hold, S(F) ≤ k, and ES[XX ′] is invertible, then
it follows that

P(τ�k) = {
β ∈ Rl :β = (

ES

[
XX ′])−1

ES

[
Xθ(X)

]
s.t. qL(τ�k|x)≤ θ(x) ≤ qU(τ�k|x) for all x ∈ X

}
�

Interest often centers on either a particular coordinate of β(τ) or the value of the
approximate CQF at a specified value of the covariates. Both these quantities may be
expressed as λ′β(τ) for some known vector λ ∈ Rl. Using Lemma 3.1, it is straight-
forward to show that the nominal identified set for parameters of the form λ′β(τ) is
an interval with endpoints characterized as the solution to linear programming prob-
lems.6

Corollary 3.1. Suppose Assumption 2.1(ii) and (iii) hold, S(F) ≤ k, and ES[XX ′] is
invertible, and define

πL(τ�k)≡ inf
β∈P(τ�k)

λ′β = inf
θ
λ′(ES

[
XX ′])−1

ES

[
Xθ(X)

]
(24)

s.t. qL(τ�k|x) ≤ θ(x)≤ qU(τ�k|x)�
6Since X has discrete support, we can characterize the function θ by the finite number of values it may

take. Because the weighting scheme S is known, so is λ′(ES[XX ′])−1, and, hence, the objectives in (24) and
(25) are of the form w′θ, where w is a known vector and θ is a finite dimensional vector over which the
criterion is optimized.
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πU(τ�k)≡ sup
β∈P(τ�k)

λ′β = sup
θ

λ′(ES

[
XX ′])−1

ES

[
Xθ(X)

]
(25)

s.t. qL(τ�k|x) ≤ θ(x) ≤ qU(τ�k|x)�

The nominal identified set for λ′β(τ) is then given by the interval [πL(τ�k)�πU(τ�k)].

Corollary 3.1 provides sharp bounds on the quantile process λ′β(·) at each point of
evaluation τ under the restriction that S(F) ≤ k. However, sharpness of the bounds at
each point of evaluation does not, in this case, translate into sharp bounds on the entire
process. To see this, note that Corollary 3.1 implies λ′β(·) must belong to the set

G(k) ≡ {
g : [0�1] → R :πL(τ�k)≤ g(τ) ≤ πU(τ�k) for all τ

}
� (26)

While the true λ′β(·) must belong to G(k), not all functions in G(k) can be justified as
some distribution’s BLA process.7 Therefore, G(k) does not constitute the nominal iden-
tified set for the process λ′β(·) under the restriction S(F) ≤ k. Fortunately, πL(·�k) and
πU(·�k) are in the identified set over the range of (τ�k) for which the bounds are finite.
Thus, the set G(k), though not sharp, does retain the favorable properties of (i) sharp-
ness at any point of evaluation τ, (ii) containing the true identified set for the process so
that processes not in G(k) are also known not to be in the identified set, (iii) sharpness
of the lower and upper bound functions πL(·�k) and πU(·�k), and (iv) ease of analysis
and graphical representation.

3.1 Examples

We now revisit Examples 2.1–2.3 from Section 2.1 so as to illustrate how to characterize
the sensitivity of conclusions drawn under MAR with parametric models. We keep the
simplifying assumption that X is scalar, but no longer assume it is binary and instead
consider the model

q(τ|X)= α(τ)+Xβ(τ)� (27)

Note that when X is binary, equation (27) provides a nonparametric model of the CQF,
in which case our discussion coincides with that of Section 2.1.

Example 2.1 (Continued). Suppose that an analysis under MAR reveals β(τ0) �= 0 at a
specific quantile τ0. We may then define the critical level of k0 necessary to cast doubt
on this conclusion as

k0 ≡ infk :πL(τ0�k)≤ 0 ≤ πU(τ0�k)� (28)

That is, under any level of selection k ≥ k0, it is no longer possible to conclude that
β(τ0) �= 0.

7For example, under our assumptions, λ′β(·) is a continuous function of τ. Hence, any g ∈ G(k) that is
discontinuous is not in the nominal identified set for λ′β(·) under the hypothetical that S(F)≤ k.
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Example 2.2 (Continued). In a parametric analogue of first order stochastic dominance
of Fy|x over Fy|x′ for x < x′, a researcher examines whether β(τ) ≤ 0 for all τ ∈ (0�1).
Suppose that a MAR analysis reveals that β(τ) > 0 for multiple values of τ. The functions
(πL�πU) enable her to assess what degree of selection is necessary to undermine her
conclusions by considering

k0 ≡ infk :πL(τ�k)≤ 0 for all τ ∈ (0�1)� (29)

Note that finding πL(τ�k0) ≤ 0 for all τ ∈ (0�1) does, in fact, cast doubt on the conclusion
that β(τ) > 0 for some τ because πL(·�k0) is itself in the nominal identified set for β(·).
That is, under a degree of selection k0, the process β(·) may equal πL(·�k0).

Example 2.3 (Continued). Generalizing the considerations of Example 2.1, we can ex-
amine what degree of selection is necessary to undermine the conclusion that β(τ) �= 0
at each specific τ. In this manner, we obtain a quantile-specific critical level of selection:

κ0(τ) ≡ infk :πL(τ�k)≤ 0 ≤ πU(τ�k)� (30)

As in Section 2.1, the resulting breakdown function κ0(·) enables us to characterize the
differential sensitivity of the entire conditional distribution to deviations from MAR.

4. Estimation and inference

In what follows, we develop methods for conducting sensitivity analysis using sample
estimates of πL(τ�k) and πU(τ�k). Our strategy for estimating the bounds πL(τ�k) and
πU(τ�k) consists of first obtaining estimates q̂L(τ�k|x) and q̂U(τ�k|x) of the conditional
quantile bounds, and then employing them in place of qL(τ�k|x) and qU(τ�k|x) in the
linear programming problems given in (24) and (25). Thus, an appealing characteristic
of our estimator is the reliability and low computational cost involved in solving a linear
programming problem—considerations that become particularly salient when imple-
menting a bootstrap procedure for inference.

Recall that the conditional quantile bounds qL(τ�k|x) and qU(τ�k|x) may be ex-
pressed as quantiles of the observed data (see Lemma 2.1). We estimate these bounds
using their sample analogues. For the development of our bootstrap procedure, how-
ever, it will be useful to consider a representation of these sample estimates as the solu-
tion to a general M-estimation problem. Toward this end, we define a family of popula-
tion criterion functions (as indexed by (τ�b�x)) given by

Qx(c|τ�b) ≡ (
P(Y ≤ c�D = 1�X = x)+ bP(D = 0�X = x)− τP(X = x)

)2
� (31)

Notice that if Qx(·|τ�b) is minimized at some c∗ ∈ R, then c∗ must satisfy the first order
condition

Fy|1�x
(
c∗) = τ − b(1 −p(x))

p(x)
� (32)
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Therefore, Lemma 2.1 implies that if unique minimizers to Qx(·|τ�b) exist for b = min{τ+
kp(x)�1} and b = max{τ−kp(x)�0}, then they must be given by qL(τ�k|x) and qU(τ�k|x),
respectively.

For this approach to prove successful, however, we must focus on values of (τ�k)
such that Qx(·|τ�b) has a unique minimizer at the corresponding b—which we note are
the same values for which the bounds qL(τ�k|x) and qU(τ�k|x) are finite. Additionally,
we focus on (τ�k) pairs such that S(F) ≤ k proves more informative than the restriction
that Fy|0�x lies between 0 and 1. Succinctly, for an arbitrary fixed ζ > 0, these conditions
are satisfied by values of (τ�k) in the set

Bζ ≡
{
(τ�k) ∈ [0�1]2 : (i) kp(x)

(
1 −p(x)

) + 2ζ ≤ τp(x)�

(ii) kp(x)
(
1 −p(x)

) + 2ζ ≤ (1 − τ)p(x)� (iii) kp(x)+ 2ζ ≤ τ�

(iv) kp(x)+ 2ζ ≤ 1 − τ�∀x ∈ X
}
�

Heuristically, by restricting attention to (τ�k) ∈ Bζ , we are imposing that large or small
values of τ must be accompanied by small values of k. This simply reflects that the fruit-
ful study of quantiles close to 1 or 0 requires stronger assumptions on the nature of the
selection process than the study of, for example, the conditional median.

For any (τ�k) ∈ Bζ , we then obtain the desired characterization of qL(τ�k|x) and
qU(τ�k|x) as

qL(τ�k|x) = arg min
c∈R

Qx
(
c|τ�τ + kp(x)

)
�

(33)
qU(τ�k|x) = arg min

c∈R
Qx

(
c|τ�τ − kp(x)

)
�

These relations suggest estimating the bounds qL(τ�k|x) and qU(τ�k|x) through the
minimizers of an appropriate sample analogue. Toward this end, we define the sample
criterion function

Qx�n(c|τ�b) ≡
(

1
n

n∑
i=1

{
1{Yi ≤ c�Di = 1�Xi = x}

(34)

+ b1{Di = 0�Xi = x} − τ1{Xi = x}}
)2

and, exploiting (31), we consider the extremum estimators for qL(τ�k|x) and qU(τ�k|x)
given by

q̂L(τ�k|x) ∈ arg min
c∈R

Qx�n
(
c|τ�τ + kp̂(x)

)
�

(35)
q̂U(τ�k|x) ∈ arg min

c∈R
Qx�n

(
c|τ�τ − kp̂(x)

)
�

where p̂(x) ≡ (
∑

i 1{Di = 1�Xi = x})/(∑i 1{Xi = x}). Finally, employing these estima-
tors, we may solve the sample analogues to the linear programming problems in (24)
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and (25) to obtain

π̂L(τ�k)≡ inf
θ
λ′(ES

[
XX ′])−1

ES

[
Xθ(X)

]
(36)

s.t. q̂L(τ�k|x) ≤ θ(x)≤ q̂U(τ�k|x)�
π̂U(τ�k)≡ sup

θ
λ′(ES

[
XX ′])−1

ES

[
Xθ(X)

]
(37)

s.t. q̂L(τ�k|x) ≤ θ(x)≤ q̂U(τ�k|x)�
We introduce the following additional assumption so as to develop our asymptotic

theory.

Assumption 4.1. (i) Bζ �= ∅; (ii) Fy|1�x(c) has a continuous bounded derivative fy|1�x(c);
(iii) fy|1�x(c) has a continuous bounded derivative f ′

y|1�x(c); (iv) ES[XX ′] is invertible;
(v) fy|1�x(c) is bounded away from zero uniformly on all c satisfying ζ ≤ Fy|1�x(c)p(x) ≤
p(x)− ζ ∀x ∈ X .

Provided that the conditional probability of missing is bounded away from 1 and
ζ > 0 is sufficiently small, Assumption 4.1(i) will be satisfied since Bζ contains the MAR
analysis as a special case. Assumption 4.1(ii) and (iii) demands that Fy|1�x be twice con-
tinuously differentiable, while Assumption 4.1(iv) ensures πL(τ�k) and πU(τ�k) are well
defined; see Corollary 3.1. Assumption 4.1(v) demands that the density fy|1�x be pos-
itive at all the quantiles that are estimated—a common requirement in the asymptotic
study of sample quantiles. We note that Assumption 4.1(v) is a strengthening of Assump-
tion 2.1(ii), which already imposes strict monotonicity of Fy|1�x.8

As a preliminary result, we derive the asymptotic distribution of the nonparamet-
ric bound estimators q̂L(τ�k|x) and q̂U(τ�k|x) uniformly in (τ�k�x) ∈ Bζ × X . Though
potentially of independent interest, this result also enables us to derive the asymptotic
distribution of the functions π̂L and π̂U , pointwise defined by (36) and (37), as elements
of L∞(Bζ) (the space of bounded functions on Bζ). Such a derivation is a key step toward
constructing confidence intervals for πL(τ�k) and πU(τ�k) that are uniform in (τ�k). As
we illustrate in Section 4.2, these uniformity results are particularly useful for conduct-
ing the sensitivity analyses illustrated in Examples 2.1–2.3.

Theorem 4.1. If Assumptions 2.1 and 4.1 hold, and {YiDi�Xi�Di}ni=1 is an independent
and identically distributed (i.i.d.) sample, then

√
n

(
q̂L − qL
q̂U − qU

)
L−→ J� (38)

where J is a Gaussian process on L∞(Bζ × X ) × L∞(Bζ × X ). Moreover, under the same
assumptions,

√
n

(
π̂L −πL

π̂U −πU

)
L−→ G� (39)

8That Fy|1�x is strictly increasing on C ≡ {c : 0 <Fy|1�x(c) < 1} implies fy|1�x(c) > 0 on a dense subset of C.
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where G is a Gaussian process on the space L∞(Bζ)×L∞(Bζ).

We note that since J and G are Gaussian processes, their marginals J(τ�k�x) and
G(τ�k) are simply bivariate normal random variables. For notational convenience, we
let J(i)(τ�k�x) and G(i)(τ�k) denote the ith component of the vector J(τ�k�x) and
G(τ�k), respectively. Thus, for instance, G(1)(τ�k) is the limiting distribution corre-
sponding to the lower bound estimate π̂L(τ�k), while G(2)(τ�k) is the limiting distri-
bution of the upper bound estimate π̂U(τ�k).

Remark 4.1. Our derivations show that πL and πU are linear transformations of the
nonparametric bounds qL and qU to establish (39).9 If X does not have discrete sup-
port, then result (38) fails to hold and our arguments do not deliver (39). While it would
constitute a significant extension to Theorem 4.1, it is, in principle, possible to employ
nonparametric estimators for qL(τ�k|·) and qU(τ�k|·), and to exploit that πL(τ�k) and
πU(τ�k) are smooth functionals to obtain asymptotically normal estimators pointwise
in (τ�k) without a discrete support requirement on X (Newey (1994) and Chen, Lin-
ton, and Keilegom (2003)). However, obtaining an asymptotic distribution jointly in all
(τ�k) ∈ Bζ , as in (39), would present a substantial complication, as standard results in
semiparametric estimation concern finite dimensional parameters, for example, a finite
set of (τ�k).

Remark 4.2. Letting P denote the joint distribution of (YD�D�X) and letting P denote
a set of distributions, we note that Theorem 4.1 is not uniform over classes P such that

inf
P∈P

inf
x∈X

P(X = x) = 0� (40)

Heuristically, the asymptotically normal approximation for q̂L(τ�k|x) and q̂U(τ�k|x) in
(38) will prove unreliable at (x�P) pairs for which P(X = x) is small relative to n. As
argued in Remark 4.1, however, a failure of (38) does not immediately translate into a
failure of (39).

Remark 4.3. For fixed distribution P , Theorem 4.1 is additionally not uniform in the
parameter ζ defining Bζ when it is allowed to be arbitrarily close to zero. Intuitively,
small values of ζ imply that qL(τ�k|x) and qU(τ�k|x) can correspond to extreme quan-
tiles of Fy|1�x for certain (τ�k) ∈ Bζ . However, the limiting distribution of a sample τn
quantile when nτn → c > 0 is nonnormal, implying that Theorem 4.1 cannot hold under
sequences ζn ↓ 0 with nζn → c′ > 0 (e.g., Galambos (1973)).

4.1 Examples

We now return to the examples of Sections 2.1 and 3.1, and discuss how to conduct in-
ference on the various sensitivity measures introduced there. For simplicity, we assume
the relevant critical values are known. In Section 4.2, we develop a bootstrap procedure
for their estimation.

9Formally, there exists a continuous linear transformation K :L∞(Bζ × X ) × L∞(Bζ × X ) → L∞(Bζ) ×
L∞(Bζ) such that (πL�πU) = K(qL�qU).
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Example 2.1 (Continued). Since under any level of selection k larger than k0, it is also
not possible to conclude β(τ0) �= 0, it is natural to construct a one-sided (rather than
two-sided) confidence interval for k0. Toward this end, let r(i)1−α(k) be the 1 − α quantile
of G(i)(τ0�k) and define

k∗
0 ≡ infk : π̂L(τ0�k)− r(1)1−α(k)√

n
≤ 0 ≤ π̂U(τ0�k)+ r(2)1−α(k)√

n
� (41)

The confidence interval [k∗
0�1] then covers k0 with asymptotic probability at least 1 − α.

Example 2.2 (Continued). Construction of a one-sided confidence interval for k0 in
this setting is more challenging, as it requires us to employ the uniformity of our estima-
tor in τ. First, let us define

r1−α(k) = inf r :P
(

sup
τ∈Bζ(k)

G(1)(τ�k)

ωL(τ�k)
≤ r

)
≥ 1 − α� (42)

where Bζ(k) = {τ : (τ�k) ∈ Bζ} and ωL is a positive weight function chosen by the re-
searcher. For every fixed k, we may then construct the function of τ,

π̂L(·�k)− r1−α(k)√
n

ωL(·�k)� (43)

which lies below πL(·�k) on Bζ(k) with asymptotic probability 1 − α. Hence, (43) pro-
vides a one- sided confidence interval for the process πL(·�k). The weight function ωL

allows the researcher to account for the fact that the variance of G(1)(τ�k) may depend
heavily on (τ�k). Defining

k∗
0 ≡ infk : sup

τ∈Bζ(k)

π̂L(τ�k)− r1−α(k)√
n

ωL(τ�k)≤ 0� (44)

it can then be shown that [k∗
0�1] covers k0 with asymptotic probability at least 1 − α.

Example 2.3 (Continued). Employing Theorem 4.1, it is possible to construct a two-
sided confidence interval for the function κ0(·). Toward this end, we exploit uniformity
in τ and k by defining

r1−α ≡ inf r :P
(

sup
(τ�k)∈Bζ

max
{ |G(1)(τ�k)|

ωL(τ�k)
�
|G(2)(τ�k)|
ωL(τ�k)

}
≤ r

)
≥ 1 − α� (45)

where, as in Example 2.2, ωL and ωU are positive weight functions. In addition, we also
let

κ∗
L(τ) ≡ infk : π̂L(τ�k)− r1−α√

n
ωL(τ�k)≤ 0� and

(46)
0 ≤ π̂U(τ�k)+ r1−α√

n
ωU(τ�k)�
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κ∗
U(τ)≡ supk : π̂L(τ�k)+ r1−α√

n
ωL(τ�k)≥ 0� or

(47)
0 ≥ π̂U(τ�k)− r1−α√

n
ωU(τ�k)�

It can then be shown that the functions (κ∗
L(·)�κ∗

U(·)) provide a functional confidence
interval for κ0(·). That is, κ∗

L(τ) ≤ κ0(τ) ≤ κ∗
U(τ) for all τ with asymptotic probability at

least 1 − α.

Remark 4.4. One could also conduct inference in these examples by employing the
sample analogues of k0 (Examples 2.1 and 2.2) or κ0(·) (Example 2.3). While the consis-
tency of such estimators follows directly from Theorem 4.1, their asymptotic distribu-
tion and bootstrap consistency require a specialized analysis of the particular definition
of “critical k” that corresponds to the conjecture under consideration. For this reason,
we instead study π̂L and π̂U , which, as illustrated by Examples 2.1–2.3, enables us to
conduct inference in a wide array of settings.

4.2 Bootstrap critical values

As illustrated in Examples 2.1–2.3, conducting inference requires use of critical values
that depend on the unknown distribution of G, the limiting Gaussian process in Theo-
rem 4.1, and possibly on weight functions ωL and ωU (as in (42) and (45)). We will allow
the weight functions ωL and ωU to be unknown, but require the existence of consistent
estimators of them.

Assumption 4.2. (i) ωL(τ�k) ≥ 0 and ωU(τ�k) ≥ 0 are continuous and bounded away
from zero on Bζ ; (ii) there exist estimators ω̂L(τ�k) and ω̂U(τ�k) that are uniformly con-
sistent on Bζ .

Given (ωL�ωU), let Gω be the Gaussian process on L∞(Bζ)×L∞(Bζ) pointwise de-
fined by

Gω(τ�k)≡
(
G(1)(τ�k)/ωL(τ�k)

G(2)(τ�k)/ωU(τ�k)

)
� (48)

The critical values employed in Examples 2.1–2.3 can be expressed in terms of quan-
tiles of some Lipschitz transformation L :L∞(Bζ)×L∞(Bζ) → R of the random variable
Gω. For instance, in Example 2.2, the relevant critical value, defined in (42), is the 1 − α

quantile of the random variable

L(Gω) = sup
τ∈Bζ(k)

G(1)
ω (τ�k)� (49)

Similarly, in Example 2.3 the appropriate critical value defined in (45) is the 1 − α quan-
tile of

L(Gω) = sup
(τ�k)∈Bζ

max
{
G(1)

ω (τ�k)�G(2)
ω (τ�k)

}
� (50)
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We therefore conclude by establishing the validity of a weighted bootstrap proce-
dure for consistently estimating the quantiles of random variables of the form L(Gω).
The bootstrap procedure is similar to the traditional nonparametric bootstrap with the
important difference that the random weights on different observations are indepen-
dent from each other—a property that simplifies the asymptotic analysis as noted in Ma
and Kosorok (2005) and Chen and Pouzo (2009). Specifically, letting {Wi}ni=1 be an i.i.d.
sample from a random variable W , we impose the following assumption.

Assumption 4.3. (i) W is independent of (Y�X�D), with W > 0 almost surely (a.s.),
E[W ] = 1, Var(W ) = 1, and E[|W |2+δ] < ∞ for some δ > 0; (ii) L :L∞(Bζ)×L∞(Bζ) → R
is Lipschitz continuous.

A consistent estimator for quantiles of L(Gω) may then be obtained through the
following algorithm.

Step 1. Generate a sample of i.i.d. weights {Wi}ni=1 that satisfy Assumption 4.3(i) and
define

Q̃x�n(c|τ�b) ≡
(

1
n

n∑
i=1

Wi

{
1{Yi ≤ c�Di = 1�Xi = x}

(51)

+ b1{Di = 0�Xi = x} − τ1{Xi = x}}
)2

�

Employing Q̃x�n(c|τ�b), obtain the bootstrap estimators for qL(τ�k|x) and qU(τ�k|x),

q̃L(τ�k|x) ∈ arg min
c∈R

Q̃x�n
(
c|τ�τ + kp̃(x)

)
�

(52)
q̃U(τ�k|x) ∈ arg min

c∈R
Q̃x�n

(
c|τ�τ − kp̃(x)

)
�

where p̃(x) ≡ (
∑

i Wi1{Di = 1�Xi = x})/(∑i Wi1{Xi = x}). Note that q̃L(τ�k|x) and
q̃U(τ�k|x) are simply the weighted empirical quantiles of the observed data evaluated at
a point that depends on the reweighted missing data probability. Note also that if we had
used the conventional bootstrap, we would run the risk of drawing a sample for which a
covariate bin is empty. This is not a concern with the weighted bootstrap as the weights
are required to be strictly positive.

Step 2. Using the bootstrap bounds q̃L(τ�k|x) and q̃U(τ�k|x) from Step 1, obtain the
estimators

π̃L(τ�k)≡ inf
θ
λ′(ES

[
XX ′])−1

ES

[
Xθ(X)

]
(53)

s.t. q̃L(τ�k|x) ≤ θ(x)≤ q̃U(τ�k|x)�
π̃U(τ�k)≡ sup

θ
λ′(ES

[
XX ′])−1

ES

[
Xθ(X)

]
(54)

s.t. q̃L(τ�k|x) ≤ θ(x)≤ q̃U(τ�k|x)�
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Algorithms for quickly solving linear programming problems of this sort are available in
most modern computational packages. The weighted bootstrap process for Gω is then
defined pointwise by

G̃ω(τ�k)≡ √
n

( (
π̃L(τ�k)− π̂L(τ�k)

)
/ω̂L(τ�k)(

π̃U(τ�k)− π̂U(τ�k)
)
/ω̂U(τ�k)

)
� (55)

Step 3. Our estimator for r1−α, the 1 − α quantile of L(Gω), is then given by the 1 − α

quantile of L(G̃ω) conditional on the sample {YiDi�Xi�Di}ni=1 (but not {Wi}ni=1):

r̃1−α ≡ inf
{
r :P

(
L(G̃ω) ≥ r|{YiDi�Xi�Di}ni=1

) ≥ 1 − α
}
� (56)

In applications, r̃1−α will generally need to be computed through simulation. This can
be accomplished by repeating Steps 1 and 2 until the number of bootstrap simulations
of L(G̃ω) is large. The estimator r̃1−α is then well approximated by the empirical 1 − α

quantile of the bootstrap statistic L(G̃ω) across the computed simulations.

We conclude our discussion of inference by establishing that r̃1−α is indeed consis-
tent for r1−α.

Theorem 4.2. Let r1−α be the 1 − α quantile of L(Gω). If Assumptions 2.1, 4.1, 4.2,
and 4.3 hold, the CDF of L(Gω) is strictly increasing and continuous at r1−α, and
{YiDi�Xi�Di�Wi}ni=1 is i.i.d., then

r̃1−α
p→ r1−α�

5. Evaluating the U.S. wage structure

We turn now to an assessment of the sensitivity of observed patterns in the U.S. wage
structure to deviations from the MAR assumption. A large literature reviewed by (among
others) Autor and Katz (1999), Heckman, Lochner, and Todd (2006), and Acemoglu and
Autor (2011) documents important changes over time in the conditional distribution of
earnings with respect to schooling levels.

In this section, we investigate the sensitivity of these findings to alternative miss-
ing data assumptions by revisiting the results of Angrist, Chernozhukov, and Fernández-
Val (2006) regarding changes across Decennial Censuses in the quantile-specific returns
to schooling. We analyze the 1980, 1990, and 2000 Census samples considered in their
study, but to simplify our estimation routine and to correct small mistakes found in the
IPUMS (Integrated Public Use Microdata Series) files since the time their extract was
created, we use new extracts of the 1% unweighted IPUMS files for each decade rather
than their original mix of weighted and unweighted samples. Use of the original extracts
analyzed in Angrist, Chernozhukov, and Fernández-Val (2006) yields similar results.

The sample consists of native born black and white men ages 40–49 with 6 or more
years of schooling who worked at least one week in the past year. Details are provided
in Appendix B. Like Angrist, Chernozhukov, and Fernández-Val (2006), we use average
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Table 1. Frequency of missing weekly earnings in census estimation sample by year and cause.

Census Total Number of Allocated Allocated Fraction of
Year Observations Earnings Weeks Worked Total Missing

1980 80,128 12,839 5,278 19�49%
1990 111,070 17,370 11,807 23�09%
2000 131,265 26,540 17,455 27�70%

Total 322,463 56,749 34,540 23�66%

weekly earnings as our wage concept, which we measure as the ratio of annual earnings
to annual weeks worked. We code weekly earnings as missing for observations with allo-
cated earnings or weeks worked. Observations that fall into demographic cells with less
than 20 observations are dropped.10 The resulting sample sizes and imputation rates
for the weekly earnings variable are given in Table 1. As the table makes clear, alloca-
tion rates have been increasing across Censuses, with roughly a quarter of the weekly
earnings observations missing by 2000. Roughly a third of these allocations result from
missing weeks worked information.11

Like Angrist, Chernozhukov, and Fernández-Val (2006), we estimate linear condi-
tional quantile models for log earnings per week of the form

q(τ|X�E)=X ′γ(τ)+Eβ(τ)� (57)

where X consists of an intercept, a black dummy, and a quadratic in potential experi-
ence, and E represents years of schooling. Our analysis focuses on the quantile-specific
“returns” to a year of schooling β(τ) though we note that, particularly in the context
of quantile regressions, these Mincerian earnings coefficients need not map into any
proper economic concept of individual returns (Heckman, Lochner, and Todd (2006)).
Rather, these coefficients merely provide a parsimonious summary of the within and
between group inequality in wages that has been a focus of this literature.

5.1 Analyzing the median

Before revisiting the main results of Angrist, Chernozhukov, and Fernández-Val (2006),
we illustrate the methods developed so far by analyzing the median wages of the 227
demographic cells in our 1990 sample. We begin by considering the worst case nonpara-
metric bounds on these medians. Because the covariates are of dimension 3, the iden-
tified set is difficult to visualize directly. Figure 4 reports the upper and lower bounds
for two experience groups of white men as a function of their years of schooling. The
bounds were obtained using q̂L(0�5�1|x) and q̂U(0�5�1|x), which are the sample ana-

10Demographic cells are defined by the intersection of single digit age, race (black vs. white), and years
of schooling.

11It is interesting to note that only 7% of the men in our sample report working no weeks in the past year.
Hence, at least for this population of men, assumptions regarding the determinants of nonresponse appear
to be more important for drawing conclusions regarding the wage structure than assumptions regarding
nonparticipation in the labor force.
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Figure 4. Worst case nonparametric bounds on 1990 medians and linear model fits for two
experience groups of white men.

logues to the quantiles in Lemma 2.1 for the case when k = 1. We also report confi-
dence regions containing the conditional median function with asymptotic probability
of 95%.12 Finally, we show the envelope of parametric Mincer fits that lie within the es-
timated confidence region.

The estimated worst case bounds on the conditional median are quite wide, with a
range of roughly 100 log points for high school dropouts. Accounting for sampling un-
certainty widens these bounds substantially despite our use of large Census samples.
Unsurprisingly, a wide range of Mincer models fit within the confidence region, with the
associated parametric returns to schooling spanning the interval [1�5%�16�3%]. More-
over, the set of parametric models in the confidence region clearly overstates our knowl-
edge of the true conditional median function relative to the nonparametric confidence
region.

Figure 5 reports the nonparametric bounds and their associated 95% confidence
region when allowing for a small amount of nonrandom selection via the nominal re-
striction that S(F) ≤ 0�05. As discussed in Section 2.2, this restriction would be satis-
fied if 95% of the missing data were missing at random. Sampling uncertainty is rela-
tively more important here than before, as the sample bounds now imply a very narrow
identified set. Even after accounting for uncertainty, however, the irregular shape of the
bounds prohibits use of a linear model. Formally, our inability to find a linear model that
obeys the bounds for the conditional median implies that the Mincer specification may
be rejected at the 5% level despite the model being partially identified. Nevertheless,
the conditional median function still appears to be approximately linear in schooling.

12These regions were obtained by bootstrapping the covariance matrix of upper and lower bounds for
each x ∈ X , where X is the set of all 227 demographic cells. We exploit independence across x to find a
critical value that delivers coverage of the conditional median function with asymptotic probability of 0�95.
See Appendix C for details.
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Figure 5. Nonparametric bounds on 1990 medians and best linear approximations for two ex-
perience groups of white men under S(F) ≤ 0�05.

Were the data known to be missing at random, so that the median was point identi-
fied, we would summarize the relationship between schooling and earnings using an
approximate parametric model as in Chamberlain (1994) or Angrist, Chernozhukov, and
Fernández-Val (2006). As we saw in Section 3, lack of identification presents no essential
obstacle to such an exercise.

The shaded regions of Figure 5 report the set of best linear approximations to the
set of conditional medians lying within the confidence region obtained under S(F) ≤
0�05.13 Note that this set provides a reasonably accurate summary of the nonparametric
confidence region. The approximate returns to schooling coefficients associated with
this set lie in the interval [0�058�0�163]. Much of this rather wide range results from sam-
pling uncertainty. Using the methods of Section 4.2, we can reduce this uncertainty by
constructing a confidence interval for the schooling coefficient β(0�5) directly rather
than inferring one from the confidence region for the entire nonparametric identified
set. Doing so yields a relatively narrow interval for the approximate returns to school-
ing of [0�102�0�118].14 Thus, in our setting, switching to an explicit approximating model
not only avoids an inappropriate narrowing of the bounds due to misspecification, but
allows for substantial improvements in precision.

5.2 A replication

We turn now to a replication of the main results in Angrist, Chernozhukov, and
Fernández-Val (2006) concerning changes across Censuses in the structure of wages

13As in the next section, we weight the squared prediction errors in each demographic bin by sample size
when defining the best linear predictor.

14We employed the bootstrap procedure of Section 4.2 to obtain estimators of the asymptotic 95% quan-
tiles of

√
n(π̂U(0�5�0�5) − πU(0�5�0�5)) and

√
n(πL(0�5�0�5) − π̂L(0�5�0�5)), which we denote by ĉU and ĉL,

respectively. The confidence interval reported is then [π̂L(0�5�0�05)− ĉL/
√
n� π̂U(0�5�0�05)+ ĉU/

√
n].
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Figure 6. Uniform confidence regions for schooling coefficients by quantile and year under
missing at random assumption (S(F) = 0). Note: Model coefficients provide minimum mean
square approximation to the true conditional quantile function.

under the assumption that the data are missing at random. This is accomplished by
applying the methods of Section 4 subject to the restriction that S(F) = 0. Details of
our algorithm are described in Appendix C. To ensure comparability with Angrist, Cher-
nozhukov, and Fernández-Val (2006), we define our approximation metric as weighting
the errors in each demographic bin by sample size (i.e., we choose S equal to empirical
measure; see Section 3).15 Notably, with the MAR restriction, our estimation procedure is
equivalent to the classical minimum distance estimator studied by Chamberlain (1994).

Figure 6 plots estimates of the approximate returns functions β(·) in 1980, 1990,
and 2000 along with uniform confidence intervals. Our MAR results are similar to those
found in Figure 2A of Angrist, Chernozhukov, and Fernández-Val (2006). They suggest
that the returns function increased uniformly across quantiles between 1980 and 1990,
but exhibited a change in slope in 2000. The change between 1980 and 1990 is consis-
tent with a general economy-wide increase in the return to human capital accumula-
tion as conjectured by Juhn, Murphy, and Pierce (1993). However, the finding of a shape
change in the quantile process between 1990 and 2000 indicates that skilled workers ex-
perienced increases in inequality relative to their less skilled counterparts, a pattern that
appears not to have been present in previous decades. This pattern of heteroscedasticity
is consistent with recently proposed multifactor models of technical change reviewed in
Acemoglu and Autor (2011).

5.3 Sensitivity analysis

A natural concern is the extent to which some or all of the conclusions regarding the
wage structure drawn under a missing at random assumption are compromised by lim-

15We also performed the exercises in this section by weighting the set of demographic groups present in
all three decades equally and found similar results.
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itations in the quality of Census earnings data. As Table 1 shows, the prevalence of earn-
ings imputations increases steadily across Censuses, with roughly a quarter of the ob-
servations allocated by 2000. With these levels of missingness, quantiles below the 25th
percentile and above the 75th become unbounded in the absence of restrictions on the
missing data process.

We now examine the bounds on the schooling coefficients governing our approxi-
mating model that result in each year when we allow for families of deviations from MAR
indexed by different values of S(F). These upper and lower bounds may then be com-
pared across years to assess the sensitivity of conclusions regarding changes in the wage
structure to violations of MAR. Of course, it is possible for substantial deviations from
MAR to be present in each year but for the nature of those deviations to be stable across
time. Likewise, in a single cross section, each schooling group may violate ignorability,
but those violations may be similar across adjacent groups. If such prior information is
available, the bounds on changes in the quantile-specific returns to schooling and their
level may be narrowed. While it is, in principle, possible to add a second dimension of
sensitivity to capture changes in the selection mechanism across time or demographic
groups, we leave such extensions for future work, as they would complicate the analysis
considerably. We simply note that if conclusions regarding changes across Censuses are
found to be robust to large unrestricted deviations from MAR, adding additional restric-
tions will not change this assessment.

Figure 7 provides 95% uniform confidence regions for the set G(k) of coefficients
governing the BLA, as defined in (26), that result when we allow for a small amount of
selection by setting S(F) ≤ 0�05. Though it remains clear that the schooling coefficients
increased between 1980 and 1990, we cannot reject the null hypothesis that the quantile
process was unchanged from 1990 to 2000. Moreover, there is little evidence of hetero-

Figure 7. Uniform confidence regions for schooling coefficients by quantile and year under
S(F) ≤ 0�05. Note: Model coefficients provide a minimum mean square approximation to the
true conditional quantile function.
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geneity across quantiles in any of the three Census samples—a straight line can be fit
through each sample’s confidence region.

To further assess the robustness of our conclusions regarding changes between 1980
and 1990, it is informative to find the level of k necessary to fail to reject the hypothesis
that no change in fact occurred between these years under the restriction that S(F) ≤ k.
Specifically, for πt

L(τ�k) and πt
U(τ�k), the lower and upper bounds on the schooling

coefficients in year t, we aim to obtain a confidence interval for the values of selection k

under which

π80
U (τ�k)≥ π90

L (τ�k) for all τ ∈ [0�2�0�8]� (58)

As in Example 2.2, we are particularly interested in k0, the smallest value of k such that
(58) holds, as it will hold trivially for all k ≥ k0. A search for the smallest value of k such
that the 95% uniform confidence intervals for these two decades overlap at all quantiles
between 0�2 and 0�8 found this “critical k” to be k∗

0 = 0�175. Due to the independence of
the samples between 1980 and 1990, the one-sided interval [k∗

0�1] provides an asymp-
totic coverage probability for k0 of at least 90%. The lower end of this confidence interval
constitutes a large deviation from MAR, indicating that the evidence is quite strong that
the schooling coefficient process changed between 1980 and 1990. Figure 8 plots the
uniform confidence regions that correspond to the hypothetical S(F) ≤ k∗

0.
Though severe selection would be necessary for all of the changes between 1980 and

1990 to be spurious, it is clear that changes at some quantiles may be more robust than
others. It is interesting then to conduct a more detailed analysis by evaluating the critical
level of selection necessary to undermine the conclusion that the schooling coefficient
increased at each quantile. Toward this end, we generalize Example 2.3 and define κ0(τ)

to be the smallest level of k such that

π80
U (τ�k)≥ π90

L (τ�k)� (59)

Figure 8. Uniform confidence regions for schooling coefficients by quantile and year under
S(F) ≤ 0�175 (1980 vs. 1990). Note: Model coefficients provide a minimum mean square approx-
imation to the true conditional quantile function as in Chamberlain (1994).
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The function κ0(·) summarizes the level of robustness of each quantile-specific conclu-
sion. In this manner, the breakdown function κ0(·) reveals the differential sensitivity of
the entire conditional distribution to violations of the missing at random assumption.

The point estimate for κ0(τ) is given by the value of k where π̂80
U (τ�k) intersects with

π̂90
L (τ�k). To obtain a confidence interval for κ0(τ) that is uniform in τ, we first con-

struct 95% uniform two-sided confidence intervals in τ and k for the 1980 upper bound
π80
U (τ�k) and the 1990 lower bound π90

L (τ�k). Given the independence of the 1980 and
1990 samples, the intersection of the true bounds π80

U (τ�k) and π90
L (τ�k) must lie be-

tween the intersection of their corresponding confidence regions with asymptotic prob-
ability of at least 90%. Since κ0(τ) is given by the intersection of π80

U (τ�k) with π90
L (τ�k),

a valid lower bound for the confidence region of the function κ0(·) is given by the inter-
section of the upper envelope for π80

U (τ�k) with the lower envelope for π90
L (τ�k) and a

valid upper bound is given by the converse intersection.
Figure 9 illustrates the resulting estimates of the breakdown function κ0(·) and its

corresponding confidence region. Unsurprisingly, the most robust results are those for
quantiles near the center of the distribution for which very large levels of selection would
be necessary to overturn the hypothesis that the schooling coefficient increased. How-
ever, the curve is fairly asymmetric, with the conclusions at low quantiles being much
more sensitive to deviations from ignorability than those at the upper quantiles. Hence,

Figure 9. Breakdown curve (1980 vs. 1990). Note: Each point on this curve indicates the mini-
mal level of S(F) necessary to undermine the conclusion that the schooling coefficient increased
between 1980 and 1990 at the quantile of interest.
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Figure 10. Confidence intervals for fitted values under S(F) ≤ 0�05. Note: Earnings quantiles
are modeled using the quadratic specification in Lemieux (2006). Model coefficients provide
a minimum mean square approximation to the true conditional quantile function. Covariates
other than education are set to the sample mean.

changes in reporting behavior between 1980 and 1990 pose the greatest threat to hy-
potheses regarding changes at the bottom quantiles of the earnings distribution.

To conclude our sensitivity analysis we also consider the fitted values that result from
the more flexible earnings model of Lemieux (2006), which allows for quadratic effects
of education on earnings quantiles.16 Figure 10 provides bounds on the 10th, 50th, and
90th conditional quantiles of weekly earnings by schooling level in 1980, 1990, and 2000
using our baseline hypothetical restriction S(F) ≤ 0�05. Little evidence exists of a change
across Censuses in the real earnings of workers at the 10th conditional quantile. At the
conditional median, however, the slope of the relationship with schooling (which ap-
pears roughly linear) increased substantially, leading to an increase in inequality across
schooling categories. Uneducated workers witnessed wage losses while skilled workers
experienced wage gains, though in both cases these changes seem to have occurred en-
tirely during the 1980s. Finally, we also note that, as observed by Lemieux (2006), the
schooling locus appears to have gradually convexified at the upper tail of the weekly
earnings distribution, with very well educated workers experiencing substantial gains
relative to the less educated.

5.4 Estimates of the degree of selection in earnings data

Our analysis of Census data revealed that the finding of a change in the quantile-specific
schooling coefficients between 1990 and 2000 is easily undermined by small amounts of

16The model also includes a quartic in potential experience. Our results differ substantively from those
of Lemieux, both because of differences in sample selection and our focus on weekly (rather than hourly)
earnings.
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selection, while changes between 1980 and 1990 (at least above the lower quantiles of
the distribution) appear to be relatively robust. Employing a sample where validation
data are present, we now turn to an investigation of what levels of selection, as indexed
by S(F), are plausible in U.S. survey data.

To estimate S(F), we first derive an alternative representation of the distance be-
tween Fy|0�x and Fy|1�x that illustrates its dependence on the conditional probability of
the outcome being missing. Toward this end, let us define the conditional probabilities

pL(x�τ) ≡ P
(
D = 1|X = x�Fy|x(Y) ≤ τ

)
� (60)

pU(x�τ) ≡ P
(
D = 1|X = x�Fy|x(Y) > τ

)
� (61)

By applying Bayes’ rule, it is then possible to express the distance between the distri-
bution of missing and nonmissing observations at a given quantile as a function of the
selection probabilities17

∣∣Fy|1�x
(
q(τ|x)) − Fy|0�x

(
q(τ|x))∣∣

(62)

=
√
(pL(x�τ)−p(x))(pU(x�τ)−p(x))τ(1 − τ)

p(x)(1 −p(x))
�

Notice that knowledge of the missing probability P(D = 0|X = x�Fy|x(Y) = τ) is suffi-
cient to compute by integration all of the quantities in (62) and (by taking the supre-
mum over τ and x) of S(F) as well.18 For this reason, our efforts focus on estimating this
function in a data set with information on the earnings of survey nonrespondents.

We work with an extract from the 1973 March Current Population Survey (CPS) for
which merged Internal Revenue Service (IRS) earnings data are available. Because we
only have access to a single cross section of validation data, our analysis will of neces-
sity be confined to determination of plausible levels of S(F) in a given year rather than
changes in the nature of selection across years. Moreover, the CPS data contain far fewer
observations than our earlier Census extracts. To ensure reasonably precise estimates,
we broaden our sample selection criteria to include additional age groups. Specifically,
our sample consists of black and white men between the ages of 25 and 55 with 5 or
more years of schooling who reported working at least one week in the past year and
had valid IRS earnings. We drop observations with annual IRS earnings less than $1,000
or equal to the IRS top code of $50,000. Following Bound and Krueger (1991), we also
drop men employed in agriculture, forestry, and fishing or in occupations likely to re-
ceive tips. Finally, because self-employment income may be underreported to the IRS,
we drop individuals who identify themselves as self-employed to the CPS. Further de-
tails are provided in Appendix B.

17See Appendix B for a detailed derivation of (62).
18Note that P(D = 0�Fy|x(Y) ≤ τ|X = x) = ∫ τ

0 P(D = 0|Fy|x(Y) = u�X = x)du because Fy|x(Y) is uni-
formly distributed on [0�1] conditional on X = x. Thus pL(x�τ) = ∫ τ

0 P(D = 0|Fy|x(Y) = u�X = x)du/τ.

Likewise pU(x�τ) = ∫ 1
τ P(D = 0|Fy|x(Y) = u�X = x)du/(1 − τ) and p(x) = ∫ 1

0 P(D = 0|Fy|x(Y) = u�

X = x)du.
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As in our study of the Decennial Census, we take the relevant covariates to be age,
years of schooling, and race. However, because our CPS sample is much smaller than our
Census sample, we coarsen our covariate categories and drop demographic cells with
fewer than 50 observations.19 This yields an estimation sample of 15,027 observations
distributed across 35 demographic cells.

For comparability with our analysis of Census data, we again take average weekly
earnings as our wage concept. Because we lack an administrative measure of weeks
worked, we construct our wage metric by dividing the IRS based measure of annual wage
and salary earnings by the CPS based measure of weeks worked. Observations with allo-
cated weeks information are dropped.20 As a result, we are only able to examine biases
generated by earnings nonresponse.

We take the log of annual IRS earnings divided by weeks worked as our measure of
Y and use response to the March CPS annual civilian earnings question as our measure
of D. This yields a missing data rate of 7�2%. We approximate the probability of nonre-
sponse with the sequence of increasingly flexible logistic models

P
(
D= 0|X = x�Fy|x(Y) = τ

) = Λ
(
b1τ + b2τ

2 + δx
)
� (M1)

P
(
D= 0|X = x�Fy|x(Y) = τ

) = Λ
(
b1τ + b2τ

2 + γ1δxτ + γ2δxτ
2 + δx

)
� (M2)

P
(
D= 0|X = x�Fy|x(Y) = τ

) = Λ
(
b1�xτ + b2�xτ

2 + δx
)
� (M3)

where Λ(·) = exp(·)/(1 + exp(·)) is the logistic CDF. These models differ primarily in
the degree of demographic bin heterogeneity allowed for in the relationship between
earnings and the probability of responding to the CPS. Model (M1) relies entirely on
the nonlinearities in the index function Λ(·) to capture heterogeneity across cells in the
response profiles. The model (M2) allows for additional heterogeneity through the inter-
action coefficients (γ1�γ2) but restricts these interactions to be linear in the cell effects
δx. Finally, (M3), which is equivalent to a cell specific version of (M1), places no restric-
tions across demographic groups on the shape of the response profile.

Maximum likelihood estimates from the three models are presented in Table 2.21

A comparison of the model log likelihoods reveals that the introduction of the interac-
tion terms (γ1�γ2) in Model 2 yields a substantial improvement in fit over the basic sep-
arable logit of Model 1 despite the insignificance of the resulting parameter estimates.
However, the restrictions of the linearly interacted Model 2 cannot, at conventional sig-
nificance levels, be rejected relative to its fully interacted generalization in Model 3,
which appears to be somewhat overfit.

19We use 5-year age categories instead of single digit ages and collapse years of schooling into four cate-
gories: <12 years of schooling, 12 years of schooling, 13–15 years of schooling, and 16+ years of schooling.
Our more stringent requirement that cells have 50 observations is motivated by our desire to accurately
estimate S(F) while allowing for rich forms of heterogeneity across demographic groups.

20Weeks allocations are less common in the 1973 CPS than the Census, comprising roughly 20% of all
allocations.

21We use the respondent’s sample quantile in his demographic cell’s distribution of Y as an estimate
of Fy|x(Y). It can be shown that sampling errors in the estimated quantiles have asymptotically negligible
effects on the limiting distribution of the parameter estimates.
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Table 2. Logit estimates of P(D = 0|X = x�Fy|x(Y)= τ) in the 1973 CPS–IRS sample.

Model 1 Model 2 Model 3

b1 −1�06 0�05
(0�43) (5�44)

b2 1�09 3�75
(0�41) (4�08)

γ1 0�45
(2�30)

γ2 1�15
(1�73)

Log likelihood −3,802�91 −3,798�48 −3,759�97
Parameters 37 39 105
Number of observations 15,027 15,027 15,027
Demographic cells 35 35 35

E[ ∂P(D=0|X=x�Fy|x(Y)=τ)
∂τ |τ=0�2] −0�04 −0�04 −0�03

E[ ∂P(D=0|X=x�Fy|x(Y)=τ)
∂τ |τ=0�5] 0�00 0�00 −0�01

E[ ∂P(D=0|X=x�Fy|x(Y)=τ)
∂τ |τ=0�8] 0�05 0�04 0�02

Min KS distance 0�02 0�02 0�01
Median KS distance 0�02 0�05 0�12
Max KS distance (S(F)) 0�02 0�17 0�67

Ages 40–49
Min KS distance 0�02 0�02 0�01
Median KS distance 0�02 0�05 0�08
Max KS distance (S(F)) 0�02 0�09 0�39

Note: Asymptotic standard errors are given in parentheses.

A Wald test of joint significance of the earned income terms (b1� b2) in the first model
rejects the null hypothesis that the data are missing at random with a p-value of 0�03.
Evidently, missing data probabilities follow a U-shaped response pattern, with very low
and very high wage men least likely to provide valid earnings information—a pattern
conjectured (but not directly verified) by Lillard, Smith, and Welch (1986). This pattern
is also found in the two more flexible logit models as illustrated in the third panel of
the table, which provides the average marginal effects of earnings evaluated at three
quantiles of the distribution. These average effects are consistently negative at τ = 0�2
and positive at τ = 0�8. It is important to note, however, that Models 2 and 3 allow for
substantial heterogeneity across covariate bins in these marginal effects that in some
cases yields response patterns that are monotonic rather than U-shaped.

It is straightforward to estimate the distance between the missing and nonmiss-
ing earnings distributions in each demographic cell by integrating our estimates of
P(D = 0|X = x�Fy|x(Y) = τ) across the relevant quantiles of interest. We implement this
integration numerically via one dimensional Simpson quadrature. The third panel of
Table 2 shows quantiles of the distribution of resulting cell-specific KS distance esti-
mates. Model 1 is nearly devoid of heterogeneity in KS distances across demographic
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Figure 11. Logit based estimates of distance between missing and nonmissing CDFs by quan-
tile of IRS earnings and demographic cell.

cells because of the additive separability implicit in the model. Model 2 yields substan-
tially more heterogeneity, with a minimum KS distance of 0�02 and a maximum distance
S(F) of 0�17. Finally, Model 3, which we suspect has been overfit, yields a median KS dis-
tance of 0�12 and an enormous maximum KS distance of 0�67. For comparability with our
earlier Census analysis, the bottom panel of Table 2 provides equivalent figures among
men ages 40–49. These age groups exhibit somewhat smaller estimates of S(F), with
maximum KS distances of 0�09 and 0�39 in Models 2 and 3, respectively.

Figure 11 provides a visual representation of our estimates from Model 2 of the
underlying distance functions |Fy|1�x(q(τ|x)) − Fy|0�x(q(τ|x))| in each of the 35 demo-
graphic cells in our sample. The upper envelope of these functions corresponds to the
quantile-specific level of selection considered in the breakdown analysis of Figure 9,
while the maximum point on the envelope corresponds to S(F). Note that while some
of the distance functions exhibit an unbroken inverted U-shaped pattern, others exhibit
double or even triple arches. The pattern of multiple arches occurs when the CDFs are
estimated to have crossed at some quantile, which yields a distance of zero at that point.
A quadratic relationship between missing data probabilities and earnings can easily
yield such patterns. Because of the interactions in Model 2, some cells exhibit effects
that are not quadratic and tend to generate CDFs that exhibit first order stochastic dom-
inance. It is interesting to note that the demographic cell that obtains the maximum KS
distance of 0�17 corresponds to young (age 25–30), black, high school dropouts for whom
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more IRS earnings are estimated to monotonically increase the probability of respond-
ing to the CPS earnings question. This leads to a distribution of observed earnings that
stochastically dominates that of the corresponding unobserved earnings.

The upper envelope of distance functions among men ages 40–49 is also illustrated
in Figure 11 and spans three demographic cells. The maximum KS distance in this group
of 0�09 is obtained by 45–49-year-old white men with a college degree. These estimates,
when compared to the breakdown function of Figure 9, reinforce our earlier conclusion
that most of the apparent changes in wage structure between 1980 and 1990 are robust
to plausible violations of MAR, but that conclusions regarding lower quantiles could po-
tentially be overturned by selective nonresponse. Likewise, the apparent emergence of
heterogeneity in the returns function in 2000 may easily be justified by selection of the
magnitude found in our CPS sample. Though our estimates of selection are fairly sensi-
tive to the manner in which cell-specific heterogeneity is modeled, we take the patterns
in Table 2 and Figure 11 as suggestive evidence that small, but by no means negligible,
deviations from missing at random are likely present in modern earnings data. These
deviations may yield complicated discrepancies between observed and missing CDFs
about which it is hard to develop strong priors. We leave it to future research to examine
these issues more carefully with additional validation data sets.

6. Conclusion

We have proposed assessing the sensitivity of estimates of conditional quantile func-
tions with missing outcome data to violations of the MAR assumption by considering
the minimum level of selection, as indexed by the maximal KS distance between the dis-
tribution of missing and nonmissing outcomes across all covariate values, necessary to
overturn conclusions of interest. Inferential methods were developed that account for
uncertainty in estimation of the nominal identified set and that acknowledge the poten-
tial for model misspecification. We found in an analysis of U.S. Census data that the well
documented increase in the returns to schooling between 1980 and 1990 is relatively ro-
bust to alternative assumptions on the missing process, but that conclusions regarding
heterogeneity in returns and changes in the returns function between 1990 and 2000 are
very sensitive to departures from ignorability.
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