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Static and dynamic games are important tools for the analysis of strategic interac-
tions among economic agents and have found many applications in economics.
In many games, equilibria can be described as solutions of polynomial equations.
In this paper, we describe state-of-the-art techniques for finding all solutions of
polynomial systems of equations, and illustrate these techniques by computing all
equilibria of both static and dynamic games with continuous strategies. We com-
pute the equilibrium manifold for a Bertrand pricing game in which the number
of equilibria changes with the market size. Moreover, we apply these techniques to
two stochastic dynamic games of industry competition and check for equilibrium
uniqueness.
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1. Introduction

Static and dynamic games are important tools for the analysis of strategic interactions
among economic agents and have found many applications in economics. Such mod-
els are used both for policy experiments and for structural estimation studies. It is well
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known that equilibrium multiplicity poses a serious threat to the validity of such anal-
yses. This threat is particularly acute if not all equilibria of the examined model are
known. Often equilibria can be described as solutions of polynomial equations (which
perhaps also must satisfy some additional inequalities). In this paper, we describe state-
of-the-art techniques developed in algebraic geometry for finding all solutions of poly-
nomial systems of equations, and illustrate these techniques by computing all equilibria
of both static and dynamic games with continuous strategies. We compute the equilib-
rium manifold for a Bertrand pricing game in which the number of pure-strategy equi-
libria changes with the market size. Moreover, we apply these techniques to two stochas-
tic dynamic games of industry competition and check for equilibrium uniqueness. Our
examples show that the all-solution methods can be applied to a variety of applied static
and dynamic models.

Multiplicity of equilibria is a prevalent problem in equilibrium models with strategic
interactions. This problem has long been acknowledged in the theoretical literature but
has in the past been largely ignored in applied work, even though simple examples of
multiple equilibria have been known for decades; see, for example, the model of strate-
gic investment in Fudenberg and Tirole (1983a). Until recently, this criticism was also
true for one of the most prolific literatures of applied game-theoretic models, namely
the literature based on the framework for the study of industry evolution introduced
by Ericson and Pakes (1995). This framework builds the foundation for very active re-
search areas in industrial organization, marketing, and other fields; see the survey by
Doraszelski and Pakes (2007). Some recent work in this literature is a great example of
the growing interest in equilibrium multiplicity in active areas of modern applied eco-
nomic analysis. Besanko, Doraszelski, Kryukov, and Satterthwaite (2010) stated that to
their knowledge “all applications of Ericson and Pakes’ (1995) framework have found a
single equilibrium.” They then showed that multiple Markov-perfect equilibria can eas-
ily arise in a prototypical model in this framework. Borkovsky, Doraszelski, and Kryukov
(2008) and Doraszelski and Satterthwaite (2010) presented similar examples with mul-
tiple Markov-perfect equilibria. But findings of multiple equilibria are not confined to
stochastic dynamic models. Bajari, Hong, Krainer, and Nekipelov (2010) showed that
multiple equilibria may arise in static games with incomplete information and they dis-
cussed a possible approach to estimating such games. Clearly, the difficulty of equilib-
rium multiplicity is not restricted to the cited papers. In fact, in many other economic
applications, we may often suspect that there could be multiple equilibria.

In many economic models, equilibria can be described as solutions of polynomial
equations (which perhaps also must satisfy some additional inequalities). Recent ad-
vances in computational algebraic geometry have led to several powerful methods and
their easy-to-use computer implementations that find all solutions to polynomial sys-
tems. Two different solution approaches stand out, all-solution homotopy methods and
Gröbner basis methods, both of which have advantages and disadvantages. The meth-
ods using Gröbner bases (Cox, Little, and O’Shea (2007), Sturmfels (2002)) can solve only
rather small systems of polynomial equations, but can analyze parameterized systems.
For an application of these methods to economics, see the analysis of parameterized
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general equilibrium models in Kubler and Schmedders (2010). The all-solution homo-
topy methods (Sommese and Wampler (2005)) are purely numerical methods that can-
not handle parameters, but can solve much larger systems of polynomial equations. It is
these homotopy methods that are the focus of the present paper.

All-solution homotopy methods for solving polynomial systems derived from eco-
nomic models have been discussed previously in both the economics and the math-
ematics literature on finite games. McKelvey and McLennan (1996) mentioned the
initial work on the development of all-solution homotopy methods such as Drexler
(1977, 1978) and Garcia and Zangwill (1977). Herings and Peeters (2005) outlined how
to use all-solution homotopies for finding all Nash equilibria of generic finite n-person
games in normal form, but neither implemented an algorithm nor solved any examples.
Sturmfels (2002) surveyed methods for solving polynomial systems of equations and ap-
plied them to finding Nash equilibria of finite games. Datta (2010) showed how to find
all Nash equilibria of finite games by polyhedral homotopy continuation. Turocy (2008)
described progress on a new implementation of a polyhedral continuation method via
the software package PHCpack (Verschelde (1999)) in the software package Gambit
(McKelvey, McLennan, and Turocy (2007)). The literature on computing one, some, or
all Nash equilibria in finite games remains very active; see the introduction to a recent
symposium by von Stengel (2010) and the many citations therein. In the present paper,
we do not consider finite games, but instead analyze static and dynamic games with
continuous strategies. Such games have many important economic applications. To our
knowledge, the present paper is the first application of state-of-the-art all-solution ho-
motopy methods to such games. In addition, this paper presents the first application of
advanced techniques such as the parameter-continuation method and the system split-
ting approach to economic models.1

The application of homotopy methods has a long history in economics; see Eaves
and Schmedders (1999). Kalaba and Tesfatsion (1991) proposed an adaptive homotopy
method to allow the continuation parameters to take on complex values to deal with

1In this paper, we neither prove any new theorems nor present the most recent examples of frontier ap-
plications. Instead, we follow the traditional approach in computational papers and describe a numerical
method and apply it to examples that are familiar to most readers. This paper, as many previous compu-
tational papers have done, aims to educate the reader about the key ideas underlying a useful numerical
method and illustrates these techniques in the context of familiar models. It does so in a way that makes it
easy for readers to see how to apply these methods to their own particular problems, and points them to
the appropriate software. To clarify what we mean by “traditional method,” we give a few examples. First,
the paper by Kloek and van Dijk (1978) introduced Monte Carlo methods to basic econometrics using ex-
amples from the existing empirical literature and also focused on the methods as opposed to examining
breakthrough applications. Second, Fair and Taylor (1983) showed how to use Gauss–Jacobi methods to
solve rational expectation models. Again, their paper neither presented new theorems nor used frontier ap-
plications as examples. Instead it focused on very simple examples that clarified the mathematical structure
of the algorithm and related it to the standard structure of rational expectations models. Third, Pakes and
McGuire (2001) showed how to use stochastic approximation to accelerate the Gauss–Jacobi algorithm that
they had previously introduced (Pakes and McGuire (1994)) for the solution of stochastic dynamic games.
Again, their paper did not analyze new applications and proved only one (convergence) theorem. Instead,
their paper educates the reader about stochastic ideas and illustrates their value in a well known example.
In this paper, we follow the tradition of this literature.
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singular points along the homotopy path. Berry and Pakes (2007) used a homotopy ap-
proach for the estimation of demand systems. The homotopy approach was first applied
to stochastic dynamic games by Besanko et al. (2010) and Borkovsky, Doraszelski, and
Kryukov (2008, 2009). These three papers report results from the application of a clas-
sical homotopy approach to the computation of Markov-perfect equilibria in stochastic
dynamic games. They show how homotopy paths can be used to find multiple equilib-
ria. When the homotopy parameter is itself a parameter of the economic model, then
all points along the path represent economic equilibria (if the equilibrium equations are
necessary and sufficient). Whenever the path bends back on itself, there exist multiple
equilibria. While this approach can detect equilibrium multiplicity, it is not guaranteed
to find all equilibria. Only the all-solution homotopy techniques presented in this paper
allow for the computation of all equilibria. However, the classical homotopy approach
has the advantage that it can find (at least) one equilibrium of much larger economic
models with thousands of equations that do not have to be polynomial. Currently avail-
able computer power does not allow us to solve systems with more than a few dozen
equations, depending on the degree of the polynomials. As we explain below, however,
the all-solution homotopy methods are ideally suited for parallel computations. Our ini-
tial experience with an implementation on a computer cluster is very encouraging.

The remainder of this paper is organized as follows. Section 2 depicts a motivating
economic example. We both provide some intuition and describe the theoretical foun-
dation for the all-solution homotopy methods in Section 3. Section 4 briefly comments
on an implementation of such methods. In Section 5, we provide more details on the
computations for the motivating example. Section 6 provides a description of the gen-
eral setup of dynamic stochastic games. In Section 7, we present an application of the
all-solution methods to a stochastic dynamic learning-by-doing model. Similarly, Sec-
tion 8 examines a stochastic dynamic model of cost-reducing investment with the all-
solution homotopy. Finally, Section 9 concludes the paper and provides an outlook on
future developments. The Appendices provide more mathematical details on four ad-
vanced features of all-solution homotopy methods.

2. Motivating example: Duopoly game with two equilibria

Before we describe details of all-solution homotopy methods, we motivate the applica-
tion of such methods in economics by reporting results from applying such a method
to a static duopoly game. Depending on the value of a parameter, this game may have
no, one, or two pure-strategy equilibria. This example illustrates the various steps that
are needed to find all pure-strategy Nash equilibria in a simple game with continuous
strategies.

2.1 Bertrand price game

We consider a Bertrand price game between two firms. There are two products, x and
y, two firms with firm x (y) producing good x (y), and three types of customers. Let px

(py ) be the price of good x (y). Dx1, Dx2, and Dx3 are the demands for product x by
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customer types 1, 2, and 3, respectively. Demands Dy1, . . . are similarly defined. Type 1
customers only want good x and have a linear demand curve

Dx1 = A−px; Dy1 = 0�

Type 3 customers only want good y and have a linear demand curve

Dx3 = 0; Dy3 =A−py�

Type 2 customers want some of both. Let n be the number of type 2 customers. We as-
sume that the two goods are imperfect substitutes for type 2 customers with a constant
elasticity of substitution between the two goods and a constant elasticity of demand for
a composite good. These assumption imply the demand functions

Dx2 = np−σ
x (p1−σ

x +p1−σ
y )(γ−σ)/(−1+σ);

Dy2 = np−σ
y (p1−σ

x +p1−σ
y )(γ−σ)/(−1+σ)�

whereσ is the elasticity of substitution between x and y, and γ is the elasticity of demand
for the composite good (q

(σ−1)/σ
1 +q

(σ−1)/σ
2 )σ/(σ−1). Total demand for good x (y) is given

by Dx =Dx1 +Dx2 +Dx3 (Dy = Dy1 +Dy2 +Dy3). Let m be the unit cost of production
for each firm. Profit for good x is Rx = (px − m)Dx; Ry is similarly defined. Let MRx be
marginal profits for good x; similarly for MRy . Equilibrium prices satisfy the necessary
conditions MRx =MRy = 0.

Firm x (y) is a monopolist for type 1 (3) customers. The two firms only compete in
the large market for type 2 customers, and so we may envision two different pricing
strategies for the firms. The mass-market strategy chooses a low price so that the firm
can sell a large quantity to the large number of type 2 customers that would like to buy
both goods but are price sensitive. Such a low price leads to small profits from the cus-
tomers dedicated to the firm’s product. The niche strategy is to just sell at a high price to
the few customers who want only its good. Such a high price leads to small demand for
its product among the price-sensitive type 2 customers.

We want to demonstrate how we can find all solutions even when there are multiple
equilibria. The idea of our example is to find values for the parameters where each firm
has two possible strategies. We examine a case where one firm goes for the high-price,
small-sales (niche) strategy and the other firm goes after type 2 customers with a mass-
market strategy. Let

σ = 3� γ = 2� n= 2700� m= 1� A= 50�

The marginal profit functions are

MRx = 50 −px + (px − 1)
(

−1 + 2700

p6
x(p

−2
x +p−2

y )3/2
− 8100

p4
x

√
p−2
x +p−2

y

)

+ 2700

p3
x

√
p−2
x +p−2

y

�
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MRy = 50 −py + (py − 1)
(

−1 + 2700

p6
y(p

−2
x +p−2

y )3/2
− 8100

p4
y

√
p−2
x +p−2

y

)

+ 2700

p3
y

√
p−2
x +p−2

y

�

2.2 Polynomial equilibrium equations

We first construct a polynomial system. The system we construct must contain all the
equilibria, but it may have extraneous solutions. The extraneous solutions present no
problem because we can easily identify and discard them.

We need to eliminate the radical terms. Let Z be the square root term

Z =
√
p−2
x +p−2

y �

which implies

0 =Z2 − (p−2
x +p−2

y )�

This is not a polynomial. We gather all terms into one fraction and extract the numera-
tor, which is the polynomial we include in our polynomial system to represent the vari-
able Z,

0 = −p2
x −p2

y +Z2p2
xp

2
y � (1)

We next use the Z definition to eliminate radicals in MRx and MRy . Again we gather
terms into one fraction and extract the numerator. The second and third equations of
our polynomial are

0 = −2700 + 2700px + 8100Z2p2
x − 5400Z2p3

x + 51Z3p6
x − 2Z3p7

x� (2)

0 = −2700 + 2700py + 8100Z2p2
y − 5400Z2p3

y + 51Z3p6
y − 2Z3p7

y � (3)

Any pure-strategy Nash equilibrium is a solution of the polynomial system (1)–(3).

2.3 Solution

Solving the above system of polynomial equations (see Section 5.1 for details), we find
18 real and 44 complex solutions. Nine of the 18 real solutions contain at least one vari-
able with a negative value and are thus economically meaningless. Table 1 shows the
remaining 9 solutions. We next check the second-order conditions of each firm. This

Table 1. Real, positive solutions of (1)–(3).

px 1�757 8�076 22�987 2�036 5�631 2�168 25�157 7�698 24�259
py 1�757 8�076 22�987 5�631 2�036 25�157 2�168 24�259 7�698
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check eliminates five more real solutions and reduces the set of possible equilibria to
four, namely

(p1
x�p

1
y)= (1�757�1�757)� (p2

x�p
2
y) = (22�987�22�987)�

(p3
x�p

3
y)= (2�168�25�157)� (p4

x�p
4
y) = (25�157�2�168)�

We next need to check global optimality for each player in each potential equilibrium.
The key fact is that the global max must satisfy the first-order conditions given the other
player’s strategy. So all we need to do is to find all solutions to a firm’s first-order condi-
tion at the candidate equilibrium and then find which one produces the highest profits.
We keep the candidate equilibrium only if it is the global maximum.

First consider (p1
x�p

1
y). We first check to see if player x’s choice is globally optimal

given py . Since we take py as given, the equilibrium system reduces to the Z equation
and the first-order condition for player x, giving us the polynomial system

0 = 0�32410568484991703p2
x + 1 −Z2p2

x�

0 = −2700 + 2700px + 8100Z2p2
x − 5400Z2p3

x + 51Z3p6
x − 2Z3p7

x�

This system has 14 finite solutions, 8 complex solutions, and 6 real solutions. One of
the solutions is px = 25�2234, where profits equal 607.315. Since this exceeds 504.625,
firm x’s profits at (p1

x�p
1
y), we conclude that (p1

x�p
1
y) is not an equilibrium. A similar

approach shows that (p2
x�p

2
y) is not an equilibrium. Given p2

y = 22�987, firm x would re-

ceive a higher profit from a low price than from p2
x. When we examine the remaining

two candidate equilibria, we find that they are two asymmetric equilibria, (p3
x�p

3
y) and

(p4
x�p

4
y). This may not appear to be an important multiplicity since the two equilibria

are mirror images of each other. However, it is clear that if we slightly perturb the de-
mand functions to eliminate the symmetries, there will still be two equilibria that are
not mirror images.

In the equilibrium (p3
x�p

3
y) = (2�168�25�157), firm x chooses a mass-market strat-

egy and firm y chooses a niche strategy. The low price allows firm x to capture most
of the market of price-sensitive type 2 customers, while it forgoes most of the possible
(monopoly) profits in its niche market of type 1 customers. Firm y instead charges a high
price (just below the monopoly price for the market of type 3 customers) to capture most
of its niche market. In the equilibrium (p4

x�p
4
y)= (25�157�2�168) the strategies of the two

firms are reversed.
This example demonstrates that the problem of finding all Nash equilibria reduces

to solving a series of polynomial systems. The first system identifies a set of solutions
for the firms’ first-order conditions, which are only necessary but not sufficient. The
second step is to eliminate all candidate equilibria where some firm does not satisfy
the local second-order condition for optimization. The third step is to check the global
optimality of each firm’s reactions in each of the remaining candidate equilibria. This
step reduces to finding all solutions of a set of smaller polynomial systems.

Figure 1 displays the manifold of a firm’s equilibrium prices for values of the market
size parameter n between 500 and 3400. For 500 ≤ n ≤ 2470, there is a unique equilib-
rium. The competitive market of type 2 customers is so small that each firm chooses a
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Figure 1. Equilibrium prices as a function of n.

niche strategy and charges a high price to focus on the few customers that only want its
good. For 3318 ≤ n ≤ 3400, there is again a unique equilibrium. The competitive market
of type 2 customers is now sufficiently large so that each firm chooses a mass-market
strategy and charges a low price to sell a high quantity into the mass market of type 2
customers. For 2481 ≤ n ≤ 3020, there are two equilibria. At these intermediate values
of n, the two firms prefer complementary strategies: one firm chooses a (high-price)
niche strategy and the other firm chooses a (low-price) mass-market strategy. Finally,
there are two regions with no pure-strategy equilibria, namely for 2471 ≤ n ≤ 2480 and
also for 3021 ≤ n ≤ 3317.

3. All-solution homotopy methods

In this section, we introduce the mathematical background of all-solution homotopy
methods for polynomial systems of equations. Polynomial solution methods rely on re-
sults from complex analysis and algebraic geometry. For this purpose, we first review
some basic definitions.

3.1 Mathematical background

We define a polynomial in complex variables.
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Definition 1. A polynomial f over the variables z1� � � � � zn is defined as

f (z1� � � � � zn) =
d∑

j=0

( ∑
d1+···+dn=j

a(d1�����dn)

n∏
k=1

z
dk
k

)
with a(d1�����dn) ∈ C� d ∈ N�

For convenience we denote z = (z1� � � � � zn). The expression a(d1�����dn)
∏n

k=1 z
dk
k for

a(d1�����dn) �= 0 is called a term of f . The degree of f is defined as

deg f = max
a(d1�����dn) �=0

n∑
k=1

dk�

The term
∑

d1+···+dn=j a(d1�����dn)
∏n

k=1 z
dk
k is called the homogeneous part of degree j of f

and is denoted by f (j).

Note that f (j) being homogeneous of degree j means f (j)(cz) = cjf (j)(z) for any
complex scalar c ∈ C. We now regard a polynomial f in the variables z1� � � � � zn as a func-
tion f :Cn → C. Then f belongs to the following class of functions.

Definition 2. Let U ⊂ Cn be an open subset and let f :U → C be a function. Then we
call f analytic at the point b = (b1� � � � � bn) ∈ U if and only if (iff) there exists a neighbor-
hood V of b such that

f (z) =
∞∑
j=0

( ∑
d1+···+dn=j

a(d1�����dn)

n∏
k=1

(zk − bk)
dk

)
∀z ∈ V �

where a(d1�����dn) ∈ C, that is, the above power series converges to the function f on V . It
is called the Taylor series of f at b.

Obviously every function given by polynomials is analytic with one Taylor expansion
on all of Cn. However, note that, in general, V � U and that the power series is divergent
outside of V . For functions in complex space, we can state the implicit function theorem
analogously to the case of functions in real space.

Theorem 1 (Implicit Function Theorem). Let

H :C × Cn → Cn with (t� z1� � � � � zn) 	→H(t� z1� � � � � zn)

be an analytic function. Denote by DzH = (
∂Hj

∂zi
)i�j=1�����n the submatrix of the Jacobian

of H containing the partial derivatives with respect to zi, i = 1� � � � � n. Furthermore, let
(t0�x0) ∈ C × Cn such that H(t0�x0) = 0 and detDzH(t0�x0) �= 0. Then there exist neigh-
borhoods T of t0 and A of x0, and an analytic function x :T → A such that H(t�x(t)) = 0
for all t ∈ T . Furthermore, the chain rule implies that

∂x

∂t
(t0)= −DzH(t0�x0)

−1 · ∂H
∂t

(t0�x0)�

Next we define the notion of a path.
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Definition 3. Let A⊂ Cn be an open or closed subset. An analytic2 function x : [0�1] →
A or x : [0�1) →A is called a path in A.

Definition 4. Let H(t� z) :Cn+1 → Cn and let x : [0�1] → Cn be an analytic function
such that H(t�x(t)) = 0 for all t. Then x defines a path in {(t�x) ∈ Cn+1 | H(t�x) = 0}.
We call the path regular, iff {t ∈ [0�1) | H(t�x(t)) = 0, detDzH(t�x(t)) = 0} = ∅.3

Note that for general homotopy methods the regularity definition is less strict. One
usually only wants the Jacobian to have full rank. Here we also impose which part of it
has full rank. Such a definition is reasonable for polynomial homotopy methods since,
as we see later, we can ensure this property for our paths.

Definition 5. Let A ⊂ Cn. We call A pathwise connected, iff for all points a1� a2 ∈ A,
there exists a continuous function x : [0�1] →A such that x(0) = a1 and x(1) = a2.

Last, we need the following notion from topology.

Definition 6. Let U�V ⊂ Cn be open subsets and let h0 :U → V , h1 :U → V be contin-
uous functions. Let

H : [0�1] ×U → V �

(t� z) 	→H(t� z)

be a continuous function such that H(0� z) = h0(z) and H(1� z) = h1(z). Then we call H
a homotopy from h0 to h1.

3.2 Building intuition from the univariate case

Homotopy methods have a long history in economics (see Eaves and Schmedders
(1999)), for finding one solution to a system of nonlinear equations. Recent applications
of such homotopy methods in game-theoretic models include Besanko et al. (2010) and
Borkovsky, Doraszelski, and Kryukov (2008). Homotopy methods for finding all solutions
of polynomial systems were first introduced by Garcia and Zangwill (1977) and Drexler
(1977). Their papers initiated an active field of research that is still advancing today; see
Sommese and Wampler (2005) for an overview. In this subsection, following Sommese
and Wampler (2005) and the many cited works therein, we provide some intuition for
the theoretical foundation underlying all-solution homotopy continuation methods.

The basic idea of the homotopy approach is to find an easier system of equations
and continuously transform it into our target system. We first illustrate this for univari-
ate polynomials. Consider the univariate polynomial f (z) = ∑

i≤d aiz
i with ad �= 0 and

deg f = d. The fundamental theorem of algebra states that f has precisely d complex

2The usual definition of a path only requires continuity, but all paths we regard are automatically given
by analytic functions.

3We see below why we can exclude t = 1 from our regularity assumption.
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roots, counting multiplicities.4 A simple polynomial of degree d with d distinctive com-
plex roots is g(z) = zd − 1, whose roots are rk = e2πik/d for k = 0� � � � � d − 1. (These roots
are called the dth roots of unity.) Now we can define a homotopy H from g to f by setting
H = (1 − t)g + tf . Thus H is a polynomial in t� z and, therefore, is an analytic function.
Under the assumption that ∂H

∂z (t� z) �= 0 for all (t� z) satisfying H(t� z) = 0 and t ∈ [0�1],
the implicit function theorem (Theorem 1) states that each root rk of g gives rise to a
path that is described by an analytical function. The idea is now to start at each solution
z = rk of H(0� z) = 0 and to follow the resulting path until a solution z of H(1� z) = 0 has
been reached. The path-following can be done numerically using a predictor–corrector
method (see, for example, Allgower and Georg (2003)). For example, Euler’s method is
a so-called first-order predictor and obtains a first step along the path by choosing an
ε > 0 and calculating

x̃k(0 + ε)= xk(0)+ ε
∂xk
∂t

(0)�

where the ∂xk
∂t (0) are implicitly given by Theorem 1. Then this first estimate is corrected

using Newton’s method with starting point x̃k(0 +ε). So the method solves the equation
H(ε�z) = 0 for z and sets xk(ε) = z.

Example 1. As a first example, we look at the polynomial f (z) = z3 +z2 +z+1. The zeros
are {−1�−i� i}. As a starting polynomial, we choose g(z) = z3 − 1. We define a homotopy
from g to f as

H(t� z)= (1 − t)(z3 − 1)+ t(z3 + z2 + z + 1)�

This homotopy generates the three solution paths shown in Figure 2. The starting points

of the three paths, − 1
2 −

√
3

2 i, − 1
2 +

√
3

2 i, and 1, respectively, are indicated by circles; the
respective end points, −i, i, and −1 are indicated by squares.

This admittedly rough outline captures the fundamental idea of the all-solution ho-
motopy methods. This method can potentially run into difficulties: first, the paths might
cross; second, the paths might bend sideways and diverge. We illustrate these problems
with an example and also show how to circumvent them.

Example 2. Let f (z) = 5 − z2 and g(z) = z2 − 1. Then a homotopy from g to f can be
defined as

H(t� z)= t(5 − z2)+ (1 − t)(z2 − 1) = (1 − 2t)z2 + 6t − 1� (4)

Now H( 1
6 � z) = 2

3z
2 has the double root z = 0, so detDzH( 1

6 �0) = 0. Such points are
called nonregular and the assumption of the implicit function theorem is not satis-
fied. Nonregular points are also problematic for the Newton corrector step in the path-
following algorithm. But matters are even worse for this homotopy since H( 1

2 � z) = 2,

4Any univariate polynomial of degree d over the complex numbers can be written as f (z) = c(z −
b1)

r1(z − b2)
r2 · · · (z − bl)

rl with c ∈ C \ {0}, b1� b2� � � � � bl ∈ C, and r1� r2� � � � � rl ∈ N. The exponent rj denotes
the multiplicity of the root bj . For example, the polynomial z3 has the single root z = 0 with multiplicity 3.
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Figure 2. Homotopy paths in Example 1 and the projection to C.

which has no zero at all, that is, there can be no solution path from t = 0 to t = 1. The
coefficient of the leading term (1 − 2t)z2 has become 0 and so the degree of the polyno-
mial H drops at t = 1

2 . Figure 3 displays the set of zeros of the homotopy. The two paths
starting at

√
5 and −√

5 diverge as t → 1
2 .

The general idea to resolve the technical problems illustrated in Example 2 is to
“walk around” the points that cause us trouble. For a description of this idea, we need

Figure 3. Homotopy paths in Example 2 and the projection to C.
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the following theorem, which describes one of the differences between complex and real
spaces.

Theorem 2. Let F = (f1� � � � � fk) = 0 be a system of polynomial equations in n variables,
with fi �= 0 for some i. Then Cn \ {F = 0} is a pathwise connected and dense subset of Cn.5

This statement does not hold true over the reals. Take for instance n = 2 and k = 1,
and set f1(x1�x2) = x1. (Note that f1 is not identically zero.) Now we restrict ourselves
to the real numbers (x1�x2) ∈ R2. If we remove the zero set {(x1�x2) ∈ R2 : f1(x1�x2) = 0},
which is the vertical axis, then the resulting set R2 \ {(x1�x2) ∈ R2 | x1 = 0} consists of two
disjoint components. Thus it is not pathwise connected.

Example 3. Returning to Example 2, we temporarily regard t also as a complex vari-
able and thus {(t� z) | H(t� z) = 0} ⊂ C2. Due to Theorem 1, we only have a path if the
determinant is locally nonzero. The points that are not regular are characterized by the
equations

(1 − 2t)z2 + 6t − 1 = 0�
(5)

detDzH = 2z(1 − 2t) = 0�

Points at which our path is interrupted are given by

1 − 2t = 0� (6)

In this case, we can easily determine that the only solution to (5) is ( 1
6 �0) and the solution

to (6) is {t = 1
2 }. The union of the solution sets to the two equations is exactly the solution

set of the system of equations

((1 − 2t)z2 + 6t − 1)(1 − 2t) = 0�
(7)

(2z(1 − 2t))(1 − 2t)= 0�

Theorem 2 now implies that the complement of the solution set to system (7) is pathwise
connected. In other words, we can find a path between any two points without running
into problematic points. To walk around those problematic points, we define a new ho-
motopy by multiplying the start polynomial z2 − 1 by eiγ for a random γ ∈ [0�2π):

H(t� z)= t(5 − z2)+ eiγ(1 − t)(z2 − 1)= (eiγ − t − teiγ)z2 + teiγ − eiγ + 5t� (8)

Now we obtain DzH = 2(eiγ − t − teiγ)z, which has z = 0 as its only solution if eiγ /∈ R
and t ∈ [0�1]. Furthermore, if eiγ /∈ R, then H(t�0) = teiγ − eiγ + 5t �= 0 for all t ∈ [0�1].
Additionally, the coefficient of z2 in (8) does not vanish for t ∈ R and thus H(t�x) = 0

5This is a simpler version of the theorem than is actually needed, but for simplicity, we avoid the general
case.
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Figure 4. Homotopy paths in Example 3 after application of the gamma trick.

always has two solutions for t ∈ [0�1] due to the fundamental theorem of algebra. There-
fore, this so-called gamma trick yields only paths that are not interrupted and are regu-
lar. Figure 4 displays the two paths: the left graph shows the paths in three dimensions;
the right graph shows a projection of the paths on C. It remains to check how strict the
condition eiγ /∈ R is. We know eiγ ∈ R ⇔ γ = kπ for k ∈ N. Since γ ∈ [0�2π), these are only
two points. Thus for a random γ, the paths exist and are regular with probability 1.

This example concludes our introductory discussion of the all-solution homotopy
approach. In the next subsection, we describe technical details of the general multivari-
ate homotopy approach. A reader who is mainly interested in the quick implementation
of homotopies as well as economic applications may want to skip this part and continue
with Section 4.

3.3 The multivariate case

When we attempt to generalize the outlined approach from the univariate to the multi-
variate case, we encounter a significant difficulty. The fundamental theorem of algebra
does not generalize to multiple equations and so we do not know a priori the number
of complex solutions. However, we can determine upper bounds on the number of so-
lutions. For the sake of our discussion in this paper, it suffices to introduce the simplest
such bound.

Definition 7. Let F = (f1� � � � � fn) :Cn → Cn be a polynomial function. Then the num-
ber

d =
∏
i

deg fi
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is called the total degree or Bezout number of F .

Theorem 3 (Bezout’s Theorem). Let d be the Bezout number of F . Then the polynomial
system F = 0 has at most d isolated solutions counting multiplicities.

This bound is tight. In fact, García and Li (1980) showed that generic polynomial
systems have exactly d distinct isolated solutions. But this result does not provide any
guidance for specific systems, since systems arising in economics and other applications
typically are so special that the number of solutions is much smaller.

Next we address the difficulties we observed in Example 2 for the multivariate case.
Consider a square polynomial system F = (f1� � � � � fn) = 0 with di = deg fi. Construct a
start system G = (g1� � � � � gn)= 0 such that

gi(z) = z
di
i − 1� (9)

Note that the polynomial gi(z) only depends on the variable zi and has the same degree
as fi(z). The polynomial functions F and G have the same Bezout number. Now con-
struct a homotopy H = (h1� � � � �hn) :C × Cn → Cn from the square polynomial system
F(z) = 0 and the start system G(z) = 0 that is linear in the homotopy parameter t. As a
result, hi(z) is a polynomial of degree di in the variables z1� � � � � zn and coefficients that
are linear functions in t,

hi(z) =
di∑
j=0

( ∑
c1+···+cn=j

a(i�c1�����cn)(t)

n∏
k=1

z
ck
k

)
�

In a slight abuse of notation we denote by ai(t) the product of the coefficients of the
highest-degree monomials of hi(z). As before, we need to rule out nonregular points
and values of the homotopy parameter for which the system H(t� z) = 0 may have no
solution. Nonregular points are solutions to the system of equations

hi = 0 ∀i�
(10)

detDzH = 0�

Additionally, values of the homotopy parameter for which one or more of our paths
might get interrupted are all t that satisfy∏

i

ai(t) = 0� (11)

For a t ′ satisfying the above equation, it follows that the polynomial H(t ′� z) has a lower
Bezout number than F(z).6 Analogously to Example 3, we can cast (10) and (11) in one
system of equations:

hi

∏
j

aj(t) = 0 ∀i�
(12)

det (DzH)
∏
i

ai(t) = 0�

6Note that after homogenization, which we introduce in Appendix A, this no longer poses any problem.
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Theorem 2 states that the complement of the solution set to this system of equations is a
pathwise connected set, so, as before, we can “walk around” those points that cause dif-
ficulties for the path-following algorithm. In fact, if we choose our paths randomly just
as in Example 3, then we do not encounter those problematic points with probability 1.

Theorem 4 (Gamma Trick). Let G(z) :Cn → Cn be our start system and let F(z) :Cn →
Cn be our target system. Then for almost all7 choices of the constant γ ∈ [0�2π), the ho-
motopy

H(t� z)= eγi(1 − t)G(z)+ tF(z) (13)

has regular solution paths and |{z |H(t1� z) = 0}| = |{z |H(t2� z)= 0}| for all t1� t2 ∈ [0�1).

We say that a path diverges to infinity at t = 1 if ‖z(t)‖ → ∞ for z(t) satisfying
H(t� z(t)) = 0 as t → 1, where ‖ · ‖ denotes the Euclidean norm. The gamma trick leads
to the following theorem.

Theorem 5. Consider the homotopy H as in (13) with a start system as in (9). For almost
all parameters γ ∈ [0�2π), the following properties hold.

(i) The preimage H−1(0) consists of d regular paths, that is, no paths cross or bend
backward.

(ii) Each path either diverges to infinity or converges to a solution of F(z) = 0 as t → 1.

(iii) If z̄ is an isolated solution with multiplicity8 m, then there are m paths converging
to it.

By construction the easy system G(z) = 0 has exactly d isolated solutions. Each of
these solutions is the starting point of a smooth path along which the parameter t in-
creases monotonically, that is, the Jacobian has full rank and the path does not bend
backward. To find all solutions of F(z) = 0, we need to follow all d paths and check
whether they diverge or run into a solution of our system. In light of the aforementioned
result by García and Li (1980) that generic polynomial systems F(z) = 0 have d isolated
solutions, Theorem 5 implies that the homotopy H gives rise to d distinct paths that ter-
minate at the d isolated roots of F . So, generically, the intuition of the univariate case
carries over to the multivariate case.

3.4 Advanced features

The described method is intuitive, but has two major drawbacks that make it imprac-
tical. First, the paths diverging to infinity are of no interest in economic applications.

7Throughout this paper, the terminology “almost all” means an open set of measure 1. All stated results
in fact hold on so-called Zariski open sets, but for simplicity we omit a proper definition of this term.

8Multiplicity of a root for a system of polynomial equations is similar to multiplicity in the univariate
case. We forgo any proper definition for the sake of simplicity.
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Second, the number of paths grows exponentially in the number of nonlinear equa-
tions. A practical homotopy method needs to spend as little time as possible on diverg-
ing paths. In addition, it always is advantageous to keep the number of paths as small
as possible. Advanced all-solution homotopy methods address both these problems. In
the Appendices, we describe the underlying mathematical approaches.

The diverging paths are of no interest for finding economically meaningful solu-
tions to systems of equations derived from an economic model. The diverging paths
typically require much more computational effort than converging paths, and their po-
tential presence requires a computer program following the paths to decide whether a
path is diverging or only very long but converging. The decision when to declare that
a path is diverging cannot be made without the risk of actually truncating a very long
converging path. A reliable and robust computational method thus needs some feature
to handle diverging paths. It is possible to “compactify” the diverging path through a
homogenization of the polynomials. Appendix A describes this approach.

The number of paths d grows rapidly with the degree of individual equations. It also
grows exponentially in the number of equations (if the equations are not linear). For
many economic models, we believe that there are only a few (if not unique) equilibria,
that is, our systems have few real solutions and usually even fewer economically mean-
ingful solutions. As a result, we may have to follow a large number of paths that do not
yield useful solutions. Also, if there are only a few real and complex solutions, then many
paths must converge to solutions at infinity. There may even be continua of solutions at
infinity which can cause numerical difficulties; see Example 4 in Appendix A. Therefore,
it would be very helpful to reduce the number of paths that must be followed as much
as possible. Appendices B and C describe two methods for a reduction of the number of
paths.

4. Implementation

We briefly describe the software package Bertini and the potential computational gains
from a parallel version of the software code.

4.1 Bertini

The software package Bertini, written in the programming language C, offers solvers for
a few different types of problems in numerical algebraic geometry; see Bates, Hauen-
stein, Sommese, and Wampler (2005). The most important feature for our purpose is
Bertini’s homotopy continuation routine for finding all isolated solutions of a square sys-
tem of polynomial equations. In addition to an implementation of the advanced homo-
topy of Theorem 7 (see Appendix A), it also allows for m-homogeneous start systems as
well as parameter-continuation homotopies as in Theorem 8; see Appendices B and C.
Bertini has an intuitive interface that allows the user to quickly implement systems of
polynomial equations; see Sections 5.1 and 5.2 for examples of code that a user must
supply. Bertini can be downloaded free of charge at http://www.nd.edu/~sommese/
bertini/.

All results in this paper were computed with Bertini on a laptop, namely an Intel
Core 2 Duo T9550 with 2.66 GHz and 4 GB RAM.

http://www.nd.edu/~sommese/bertini/
http://www.nd.edu/~sommese/bertini/
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4.2 Alternatives

Two other all-solution homotopy software packages are PHCpack (Verschelde (1999))
written in ADA, and POLSYS_PLP (Wise, Sommese, and Watson (2000)) written in
FORTRAN90 and which is intended to be used in conjunction with HOMPACK90 (Wat-
son, Sosonkina, Melville, and Walker (1997)), a popular homotopy path solver. Because
of its versatility, stable implementation, great potential for parallelization on large com-
puter clusters, and friendly user interface, we use Bertini for all our calculations.

4.3 Parallelization

The overall complexity of the all-solution homotopy method is the same as for other
methods used for polynomial system solving. The major advantage of this method, how-
ever, is that it is naturally parallelizable. Following each path is a distinct task, that is, the
paths can be tracked independently from each other. Moreover, the information gath-
ered during the tracking process of a path cannot be used to help track other paths.

This advantage coincides with recent developments in processing technology. The
performance of a single processor no longer grows as in the years before, since power
consumption and core temperature have become big issues in the production of com-
puter chips. The new strategy of computer manufacture’s is to use multiple cores within
a single machine to spread out the workload.

The software package Bertini is available in a parallel version. As of this writing, we
have already successfully computed examples via parallelization on 200 processors at
the CSCS cluster (Swiss Scientific Computing Center). To spread the work across many
more processors, a modest revision of the Bertini code is necessary. We are optimistic
that we will soon be able to solve problems on clusters with thousands of processors.
Such a setup will allow us to solve problems that are orders of magnitude larger than
those described below.

5. Bertrand price game continued

We return to the duopoly price game from Section 2. We now show how to solve the
problem with Bertini. We also show how to use some of the advanced features from Ap-
pendices A–C.

5.1 Solving the Bertrand price game with Bertini

To solve the system (1)–(3) in Bertini, we write the input file

CONFIG

MPTYPE: 0;

END;

INPUT

variable_group px,py,z;

function f1, f2, f3;
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f1 = -(px^2)-py^2+z^2*px^2*py^2;

f2 = -(2700)+2700*px+8100*z^2*px^2-5400*z^2*px^3

+51*z^3*px^6-2*z^3*px^7;

f3 = -(2700)+2700*py+8100*z^2*py^2-5400*z^2*py^3

+51*z^3*py^6-2*z^3*py^7;

END;

The option MPTYPE: 0 indicates that we are using standard path-tracking. The polyno-
mials f1, f2, f3 define the system of equations. The Bezout number is 6 × 10 × 10 = 600.
Thus, Bertini must track 600 paths. With the above code, we obtained 18 real solutions,
44 complex solutions, 270 truncated infinite paths, and 268 failures.9 In Appendix A, we
show that if we homogenize the above equations, then we have continua of solutions
at infinity as illustrated in Example 4. Such solutions are responsible for the large num-
ber of failures, since at these solutions the rank of the Jacobian drops. Of course, such
paths with convergence failures represent a serious concern. Fortunately, Bertini offers
the option MPTYPE: 2 for improved convergence. This command instructs Bertini to
use adaptive precision, which handles singular solutions much better but needs more
computation time. We then find the same 18 real and 44 complex solutions as before,
but in contrast to the previous run, we now have 538 truncated infinite paths and no
failures. Bertini lists the real solution in the file real_finite_solutions and all fi-
nite solutions in finite_solutions.

Next we show how to reduce the number of paths with m-homogenization (see Ap-
pendix B). Replace variable_group px,py,z; by

variable_group px;

variable_group py;

variable_group z;

By separating the variables in the different groups, we indicate how to group them for
the m-homogenization. As a result, we have only 182 paths to track. However, each new
variable group adds another variable to the computations10 and decreases numerical
stability. Therefore, we always have to consider the problem of reducing the number of
paths versus increasing the number of variables.

A key point to note is that the number of solutions is much smaller than the Bezout
number. The Bezout number of the system (1)–(3) is 600, but there are only 62 finite so-
lutions. This fact may be surprising in light of the theorem that says that systems such
as (1)–(3) generically have 600 finite complex solutions; see Garcia and Li (1980). How-
ever, system (1)–(3) is not similar to the generic system, since most monomials of degree
6 are missing from (1), and most monomials of degree 10 are missing from (2) and (3).

9In those cases, the path tracker failed to converge on a solution at infinity. Note that Bertini uses random
numbers to define the homotopy, so the number of failed paths varies.

10We repeatedly solve square systems of linear equations. Bertini performs this task with conventional

methods with a complexity of roughly 1
3n

3, where n is the number of variables. Thus increasing the number
of variables by m adds 1

3 (m
3 + 3m2n+ 3n2m) to the complexity for each iteration of Newton’s method.



308 Judd, Renner, and Schmedders Quantitative Economics 3 (2012)

The absence of so many monomials often implies a far smaller number of finite com-
plex solutions. For many games this fact makes our strategy much more practical than
we would initially think.

Another key point to note is that the all-solution methods can only be applied to
polynomial systems, that is, when all variables have exponents with nonnegative inte-
ger values. We cannot apply such a method to equations with irrational exponents. Such
systems would occur in the Bertrand game, for example, if an elasticity were an irrational
number such as π. In addition, an important prerequisite for Bertini to be able to trace
all paths is that the Bezout number remains relatively small. The conversion of systems
with rational exponents with large denominators to proper polynomial systems, how-
ever, leads to polynomial systems with large exponents. For example, the conversion
of equations with exponents such as 54,321/10,000 leads to very difficult systems that
require tracing a huge number of paths. In addition, such polynomial terms with very
large exponents will likely generate serious and perhaps fatal numerical difficulties for
the path tracker. Therefore, we face some practical constraints on the size of the rational
exponents appearing in our economic models.

5.2 Application of parameter continuation

To demonstrate parameter continuation, which we describe in Appendix C, we choose
n as the parameter and vary it from 2700 to 1000. Note that in Bertini the homotopy
parameter goes from 1 to 0, so to do this, we define a homotopy just between those two
values:

n = 2700t + (0�22334546453233 + 0�974739352i)t(1 − t)+ 1000(1 − t)�

Thus for t = 1, we have n = 2700, and if t = 0, then n = 1000. The complex number in the
equation is the application of the gamma trick. We also have to provide the solutions
for our start system. We already solved this system. We just rename Bertini’s output file
finite_solutions to start, which now provides Bertini with the starting points for
the homotopy paths. In addition, we must alter the input file as follows:

CONFIG
USERHOMOTOPY: 1;
MPTYPE: 0;
END;
INPUT
variable px,py,z;
function f1, f2, f3;
pathvariable t;
parameter n;
n = t*2700+(0.22334546453233+0.974739352*I)*t*(1-t)+(1-t)*1000;
f1 = -(px^2)-py^2+z^2*px^2*py^2;
f2 = -(n)+n*px+3*n*z^2*px^2-2*n*z^2*px^3+51*z^3*px^6-2*z^3*px^7;
f3 = -(n)+n*py+3*n*z^2*py^2-2*n*z^2*py^3+51*z^3*py^6-2*z^3*py^7;
END;
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Table 2. Real, positive solutions for n= 1000.

px 3�333 2�247 3�613 2�045 24�689
py 2�247 3�333 3�613 2�045 24�689

If we run Bertini, we obtain 14 real and 48 complex solutions. Note that the number
of real solutions has dropped by 4. Thus if we had not used the gamma trick, some of
our paths would have failed. There are only five positive real solutions. The first three
solutions in Table 2 fail the second-order conditions for at least one firm. The fourth
solution fails the global-optimality test. Only the last solution in Table 2 is an equilibrium
for the Bertrand game for n = 1000.

5.3 The manifold of real positive solutions

The parameter-continuation approach allows us to compare solutions and thus equi-
libria for two different (vectors of) parameter values q0 and q1 of our economic model.
Ideally we would like to push our analysis even further and, in fact, compute the equi-
librium manifold for all convex combinations sq1 + (1 − s)q0 with s ∈ [0�1].

Observe that Theorem 8 in Appendix C requires a path between q0 and q1 of the form

ϕ(s) = eiγs(s − 1)+ sq1 + (1 − s)q0

with a random γ ∈ [0�2π). Note that for real values q0 and q1, the path ϕ(s) is not real
and so all solutions to F(z�ϕ(s)) = 0 are economically meaningless for s ∈ (0�1). This
problem would not occur if we could drop the first term of ϕ(s) and instead use the
convex combination

ϕ̃(s) = sq1 + (1 − s)q0

in the definition of the parameter-continuation homotopy. Now an examination of the
real solutions to F(z� ϕ̃(s)) = 0 would provide us with the equilibrium manifold for
all ϕ̃(s) with s ∈ [0�1]. Unfortunately, such an approach does not always work. As we
have seen in the previous section, while the number of isolated finite solutions remains
constant with probability 1, the number of real solutions may change. A parameter-
continuation homotopy with ϕ̃(s) does not allow for this change.

To illustrate the described difficulty, we examine two parameter-continuation ho-
motopies in Bertini. We vary the parameter n first from 2700 to 3400 and then from 2700
to 500. Figure 5 displays the positive real solutions as a function of n over the entire range
from 500 to 3400. For a clear view of the different portions of the manifold, we separate
it into two graphs.

For the first homotopy, the number of positive real, other real, and complex (within
nonzero imaginary part) solutions does not change as n is increased from 2700 to 3400.
Therefore, in this case, the described approach to obtain the manifold of (positive) real
solutions encounters no difficulties. Things are quite different for the second homotopy
when n is decreased from 2700 to 500. As n approaches 1188.6, the paths for the two
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largest production quantities converge and then, when n is decreased further, move into
complex space. The same is true for two paths in the lower graph of Figure 5. Bertini
reports an error message for all four paths and stops tracking them. At n = 1188�6, the
number of real solutions changes from 18 to 14, while the number of (truly) complex
solutions with a nonzero imaginary part increases from 44 to 48. A similar change in the
number of real and complex solutions occurs for n = 813�8.

To determine the equilibrium manifold, we need to check the second-order and
global-optimality conditions for all positive real solutions. Doing so yields the equilib-
rium manifold in Figure 1 in Section 2.

In sum, we observe that a complete characterization of the equilibrium manifold
is not a simple exercise. When we employ the parameter continuation approach with
a path of parameters in real space, then we have to allow for the possibility of path-
tracking failures whenever the number of real and complex solutions changes. The de-
termination of the entire manifold of positive real solutions may, therefore, require nu-
merous homotopy runs. Despite these difficulties, we believe that the parameter con-
tinuation approach is a very helpful tool for the examination of equilibrium manifolds.

We can continue our analysis for larger values of the market size n. Figure 6 shows
the unique equilibrium price px = py for 3400 ≤ n ≤ 10,000. The market of type 2 cus-
tomers is so large that both firms choose a mass-market strategy and charge a low price.
While the number of equilibria remains constant for large values of n, the number of real

Figure 6. Unique equilibrium for large values of n.
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solutions changes twice in the examined region. Recall that there are 18 real solutions
for n = 3400. This number decreases to 16 at about n = 5104�5 and further to 14 at about
n = 5140�8.

6. Equilibrium equations for dynamic stochastic games

In this section, we first briefly describe a general setup of dynamic stochastic games.
Such games date back to Shapley (1953); for a textbook treatment, see Filar and Vrieze
(1997). Subsequently, we explain how Markov-perfect equilibria (MPE) in these games
can be characterized by nonlinear systems of equations.

6.1 Dynamic stochastic games: General formulation

We consider discrete-time infinite-horizon dynamic stochastic games of complete infor-
mation with N players. In period t = 0�1�2� � � � , player i ∈ {1�2� � � � �N} is characterized
by its state ωi�t ∈ Ωi. The set of possible states, Ωi, is finite and, without loss of generality,
we thus define Ωi = {1�2� � � � � ω̂i} for some number ω̂i ∈ N. The product Ω = ∏N

i=1 Ωi is
the state space of the game; the vector ωt = (ω1�t �ω2�t � � � � �ωN�t) ∈ Ω denotes the state
of the game in period t.

Players choose actions simultaneously. Player i’s action in period t is ai�t ∈ Ai(ωt),
where Ai(ωt) is the set of feasible actions for player i in state ωt . In many economic ap-
plications of dynamic stochastic games, Ai(ωt) is a convex subset of RM , M ∈ N, and we
adopt this assumption here to employ standard first-order conditions in the analysis. We
denote the collection of all players’ actions in period t by at = (a1�t � a2�t � � � � � aN�t) and de-
note the collection of all but player i’s actions by a−i�t = (a1�t � � � � � ai−1�t � ai+1�t � � � � � aN�t).

Players’ actions affect the probabilities of state-to-state transitions. If the state in
period t is ωt and the players choose actions at , then the probability that the state in
period t + 1 is ω+ is Pr(ω+|at;ωt). In many applications, the transition probabilities for
player i’s state are assumed to depend on player i’s actions only and to be indepen-
dent of other players’ actions and transitions in their states. We follow this custom and
make the same assumption. Denoting the transition probability for player i’s state by
Pri((ω+)i|ai�t;ωi�t), the transition probability for the state of the game therefore satisfies

Pr(ω+|at;ωt) =
N∏
i=1

Pri((ω+)i|ai�t;ωi�t)�

If the state of the game is ωt in period t and the players choose actions at , then player
i receives a payoff πi(at�ωt). Players discount future payoffs using a discount factor β ∈
(0�1). The objective of player i is to maximize the expected net present value of all its
future cash flows,

E

{ ∞∑
t=0

βtπi(at;ωt)

}
�

Economic applications of dynamic stochastic games typically rely on the equilib-
rium notion of a pure strategy Markov-perfect equilibrium (MPE). That is, attention is
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restricted to pure equilibrium strategies that depend only on the current state and are
independent of the history of the game. We can thus drop the time subscript. Player
i’s strategy Ai maps each state ω ∈ Ω into its set of feasible actions Ai(ω). The ac-
tions of all other players in state ω prescribed by their respective strategies are denoted
A−i(ω) = (A1(ω)� � � � �Ai−1(ω)�Ai+1(ω)� � � � �AN(ω)). Finally, we denote by Vi(ω) the
expected net present value of future cash flows to player i if the current state is ω. The
mapping Vi :Ω → R is player i’s value function.

For given Markovian strategies A−i of all other players, player i faces a discounted
infinite-horizon dynamic programming problem. As Doraszelski and Judd (2012) point-
ed out, Bellman’s principle of optimality implies that the optimal solution for this dy-
namic programming problem is again a Markovian strategy Ai. That is, a Markov-perfect
equilibrium remains subgame perfect even without the restriction to Markovian strate-
gies. The Bellman equation for player i’s dynamic programming problem is

Vi(ω) = max
a∈Ai(ω)

{
πi(a�A−i(ω);ω)+βE[Vi(ω+)|a�A−i(ω);ω]}� (14)

where the expectation operator E[·|·] determines the conditional expectation of the
player’s continuation values Vi(ω

+), which are a function of the next period’s state ω+,
which in turn depends on the players current action a, the other players’ actions A−i(ω),
and the current state ω. We denote by

hi(a�A−i(ω);ω;Vi) = πi(a�A−i(ω);ω)+βE[Vi(ω+)|a�A−i(ω);ω]
the maximand in the Bellman equation. Player i’s optimal action Ai(ω) ∈ Ai(ω) ⊂ RM

in state ω is given by

Ai(ω) = arg max
a∈Ai(ω)

hi(a�A−i(ω);ω;Vi)� (15)

For each player i = 1�2� � � � �N , equations (14) and (15) yield optimality conditions on the
unknowns Vi(ω) and Ai(ω) in each state ω ∈ Ω. A Markov-perfect equilibrium (in pure
strategies) is now a simultaneous solution to equations (14) and (15) for all players and
states.

6.2 Equilibrium conditions

Doraszelski and Satterthwaite (2010) developed sufficient conditions for the existence of
a Markov-perfect equilibrium for a class of dynamic stochastic games. A slightly modi-
fied version of the existence result in their Proposition 2 holds in the described model
under the assumptions that both actions and payoffs are bounded, and the maximand
function hi(·�A−i(ω);ω;Vi) is strictly concave for all ω ∈ Ω, other players’ strategies
A−i, and value functions Vi satisfying the Bellman equation. Under these assumptions,
the maximand hi(·�A−i(ω);ω;Vi) has a unique maximizer Ai(ω). This unique maxi-
mizer could lie on the boundary of or be an interior solution of the set of feasible actions
Ai(ω). (As Vi changes, so does the maximizer, and there could be several consistent so-
lutions and thus equilibria.)
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For the purpose of this paper, we restrict attention to models that satisfy two fur-
ther assumptions that are frequently made in economic applications. First, the func-
tion hi(·�A−i(ω);ω;Vi) is continuously differentiable. Second, we assume that the max-
imizer in equation (15) is always an interior solution. Under these assumptions, we can
equivalently characterize players’ optimality conditions (14) and (15) by a set of neces-
sary and sufficient first-order conditions,

0 = ∂

∂a

{
πi(a�A−i(ω);ω)+βE[Vi(ω+)|a�A−i(ω);ω]}∣∣∣∣

a=Ai(ω)

� (16)

Vi(ω) = πi(a�A−i(ω);ω)+βE[Vi(ω+)
∣∣a�A−i(ω);ω]|a=Ai(ω)� (17)

Thus we have M + 1 equations for each state ω ∈ Ω and for each player i = 1�2� � � � �N .
Any simultaneous solution of pure strategies A1(ω)� � � � �AN(ω) and values V1(ω)� � � � �

VN(ω) for all states ω ∈Ω yields an MPE.
If the payoff functions πi and the probability functions Pr(ω+|·;ω) are rational func-

tions, then the nonlinear equilibrium equations can be transformed into a polynomial
system of equations. In the next two sections we examine two economic models that
satisfy these assumptions.

7. Learning curve

In many industries, the marginal cost of production decreases with the cumulative
output: this effect is often called learning-by-doing. The impact of learning-by-doing
on market equilibrium has been studied in the industrial organization literature for
decades. Early work in this area includes Spence (1981) and Fudenberg and Tirole
(1983b). Besanko et al. (2010) analyzed learning-by-doing and organizational forgetting
within the framework of Ericson and Pakes (1995).

In this section, we examine a basic learning-by-doing model in the Ericson and Pakes
(1995) framework. Although the functional forms for the price functions and transition
probabilities are not polynomial, we can derive a system of polynomial equations such
that all positive real solutions of this system are Markov-perfect equilibria.

7.1 A learning-by-doing model

There are N = 2 firms and two goods. Firm i produces good i, i = 1�2. The output of
firm i is denoted by qi, which is the firm’s only action. (In the language of our general
formulation, ai = qi.) The state variable ωi for firm i is a parameter in the firm’s pro-
duction cost function ci(qi;ωi). In our numerical example, we assume ci(qi;ωi) = ωiqi,
implying that the state ωi is firm i’s unit cost of production. For simplicity, we assume,
without loss of generality, that ωi ∈Ωi = {1�2� � � � � ω̂i}.

In each period, the two firms engage in Cournot competition. Customers’ utility
function over the two goods (and money M) is

u(q1� q2) =w
γ

γ − 1
(
q
(σ−1)/σ
1 + q

(σ−1)/σ
2

)(γ−1)σ/(γ(σ−1)) +M�
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where σ is the elasticity of substitution between goods 1 and 2, γ is the elasticity of de-
mand for the composite good (q

(σ−1)/σ
1 + q

(σ−1)/σ
2 )σ/(σ−1), and w is a weighting factor.

The resulting market clearing prices for the two goods are then

P1(q1� q2) =wq
−1/σ
1

(
q
(σ−1)/σ
1 + q

(σ−1)/σ
2

)(γ−σ)/(γ(σ−1))
�

P2(q1� q2) =wq
−1/σ
2

(
q
(σ−1)/σ
1 + q

(σ−1)/σ
2

)(γ−σ)/(γ(σ−1))
�

where Pi(q1� q2) = ∂
∂qi

u(q1� q2) denotes the price of good i if sales of the two goods are
(q1� q2). And so if the two firms produce the quantities (q1� q2) in state ω = (ω1�ω2),
their resulting payoffs are

πi(qi� q−i;ω) = Pi(q1� q2)qi − ci(qi;ωi)� (18)

Note that in this model, firm i’s payoff does not explicitly depend on the other firm’s
state, but only implicitly via the other firm’s production quantity.

The dynamic aspect of the model arises from changes in the unit cost ωi. Through
learning-by-doing the firms can reduce their unit cost. In our numerical example, we
use the popular functional form (see Pakes and McGuire (1994), Borkovsky, Doraszelski,
and Kryukov (2009), and many other papers) for the transition probabilities

Pri[ωi − 1|qi;ωi] = Fqi
1 + Fqi

� Pri[ωi|qi;ωi] = 1
1 + Fqi

�

(19)
0 otherwise

with some constant F > 0 for ωi ≥ 2. The lowest-cost state ωi = 1 is an absorbing state.
Note that outside the absorbing state, the higher is a firm’s production quantity, the
higher is its probability to move to the next lower-cost state. We assume that the transi-
tion probability functions are independent across firms.

Substituting the expressions (18) and (19) into the equilibrium equations (16) and
(17) yields a system of equilibrium equations for the learning-by-doing model. This sys-
tem has four equations for each state ω= (ω1�ω2) and thus a total of 4|ω̂1||ω̂2| equations
and unknowns.

Solving the system of equations is greatly simplified by the observation that the na-
ture of the transitions in this model induces a partial order on the state space Ω. The
unit cost ωi can only decrease, but never increase, during the course of the game. In-
stead of solving one large system of equations, we can successively solve systems of four
equations state by state. For the lowest-cost state (1�1), we only need to find the static
Cournot equilibrium and calculate the values Vi(1�1). Next we can successively solve
the systems for the states (ω1�1) with ω1 = 2�3� � � � � ω̂1 and for the states (1�ω2) with
ω2 = 2�3� � � � � ω̂2. Next we can do the same for all (ω1�2) with ω1 = 2�3� � � � � ω̂1, for all
nodes (2�ω2) with ω2 = 3� � � � � ω̂1, and so on. For symmetric games, we can further re-
duce the workload. We only need to solve system of equations for the states (ω1�ω2) with
ω2 ≤ ω1, that is, for (1�1), solve (ω1�2) for ω1 = 2�3� � � � � ω̂1, (ω1�3) for ω1 = 3� � � � � ω̂1,
and so on.
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7.2 Solving the equilibrium equations with Bertini

We compute Markov-perfect equilibria for the learning-by-doing game for the following
parameter values. We consider a utility function with σ = 2, γ = 3/2, and w = 100/3. The
parameter for the transition probability function is F = 1/5. The firms use the discount
factor β= 0�95. We only examine symmetric cases with Ω1 = Ω2.

Similar to the static game in Section 5, the equilibrium equations in this model con-
tain fractions and radical terms. The transformation of the equations into polynomial
form forces us to introduce auxiliary variables Q1, Q2, and Q3 that are defined as

Q2
1 = q1� Q2

2 = q2� Q2
3 =Q1 +Q2�

The introduction of these new variables enables us to eliminate the value function terms
Vi(q1� q2) of both firms. For each state (ω1�ω2), we obtain a system of five equations in
the five unknowns q1, q2, Q1, Q2, and Q3. There is a multiple root at 0. To remove it, we
add another variable t and a normalization equation tQ1 − 1 = 0, thereby obtaining a
system with six variables and six equations.

We solve four different types of polynomial systems. First, we solve the system of the
absorbing state (1�1). The monomials with the highest degrees of the six equations are

tQ1� Q3
3� Q2

1� Q2
2� −Q1Q3(Q1 +Q2)� −Q2Q3(Q1 +Q2)�

respectively, resulting in a Bezout number of 23 · 33 = 216. Using m-homogeneity, the
number of paths to track reduces to 44. Bertini tracks these 44 paths in just under 4 sec-
onds.

Next we solve the equations for the states (1�ω2) for ω2 ≥ 2. The highest degree terms
of the six equations are

tQ1� Q3
3� Q2

1� Q2
2� −Q1Q3(Q1 +Q2)�

(9F2ω2)Q1Q2Q3q
2
2 + (9F2ω2)Q

2
2Q3q

2
2�

respectively, resulting in a Bezout number of 23 · 32 · 5 = 360. Thanks to m-homogeneity,
we need to track 140 paths and this takes us, with Bertini, about 1 minute for each ω2.

Then we solve the equations for state (2�2), where the highest degree terms are

tQ1� Q3
3� Q2

1� Q2
2� (9F4ω1)Q

2
1Q3q

2
1q

2
2 + (9F4ω1)Q1Q2Q3q

2
1q

2
2�

(9F4ω2)Q1Q2Q3q
2
1q

2
2 + (9F4ω2)Q

2
2Q3q

2
1q

2
2�

so the Bezout number is 23 ·3 ·72 = 1176. Exploiting m-homogeneity, we have to track 364
paths, which takes about 5 minutes. There are 152 real and complex (finite) solutions.

For the remaining states, we can now use parameter continuation, since the degree
structure of the systems is identical to that of the equations for state (2�2). The Bezout
number remains the same as for state (2�2), but now we only have to track 152 paths,
since that was the number of solutions to the system at (2�2). (To check whether 152 is
indeed the maximal number k of isolated finite solutions as in Theorem 8, we solve a few
systems with randomly chosen coefficients but the same degree structure. In all cases
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Table 3. Production quantities q1 and value function V1 of firm 1.

ω1\ω2 5 4 3 2 1

5 7�202 874 7�108 861 7�009 851 6�889 843 6�626 838
4 8�850 939 8�748 925 8�620 913 8�464 905 8�137 899
3 11�475 996 11�385 982 11�233 969 11�016 959 10�573 953
2 16�921 1042 16�840 1027 16�699 1014 16�401 1003 15�714 997
1 38�228 1072 38�171 1057 38�056 1043 37�773 1032 36�600 1025

there are 152 isolated finite solutions.) Tracking these 152 paths takes about 25 seconds
for each state. Again we observe that tracking paths ending at finite solutions takes much
less time than tracking paths that end at points at infinity. The reason is again that some
of the solutions at infinity lie within continua of solutions and thus cause numerical
difficulties.

We solved instances of the described learning-by-doing model with many states for
each firm. We wrote a C++ script that solved the problem by backward induction by
calling Bertini at each state.11 To keep the presentation of the results manageable, we
report here the results for a symmetric game with ω̂1 = 5. In all our systems there was a
unique real positive solution for all variables. Therefore, we found a unique Markov-
perfect equilibrium for the learning-by-doing model. Table 3 reports the production
quantities q1 and the values of the value function V1 of firm 1. For example, in state
(ω1�ω2) = (3�4), firm 1 produces q1 = 11�385 and the game has a value of V1 = 982 for
the firm. By symmetry, the corresponding values for firm 2 are (q2� V2)= (8�620�913).

Table 4 reports running times on a laptop (Intel Core 2 Duo T9550 with 2.66 GHz
and 4 GB RAM) for the learning-by-doing model. The running times grow approximately
linearly in the number of states ω̂1 × ω̂2 and so we could easily solve games with many
more states per firm.

8. Cost-reducing investment and depreciation

In models of cost-reducing investment, spending on investment reduces future pro-
duction cost; see, for example, Flaherty (1980) and Spence (1984). In models of irre-
versible investment, current investment spending increases future production capac-
ity; see Fudenberg and Tirole (1983a). Besanko and Doraszelski (2004) presented a
model with both capacity investments and depreciation within the Ericson and Pakes
(1995) framework. Depreciation tends to offset investment. In this section, we describe

Table 4. Running times.

ω̂1 = ω̂2 3 5 7 10
Time (sec) 477 745 1359 2852

11The script is available at http://www.business.uzh.ch/professorships/qba/publications/Software.
html.

http://www.business.uzh.ch/professorships/qba/publications/Software.html
http://www.business.uzh.ch/professorships/qba/publications/Software.html
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a stochastic dynamic game model in which the marginal cost of production may de-
crease through investment or increase through depreciation.

8.1 A cost-reducing investment model

The model of Cournot competition is the same as in the learning-by-doing model with
the only exception being that a firm’s production quantity does not affect its unit cost.
The dynamic aspect of the model arises again from changes in the unit cost ωi. Both
increases and decreases of the unit cost are possible. Firms may be hit by a depreciation
shock that results in a cost increase, but they can also make a cost-reducing investment.
A depreciation shock increases the unit cost from ωi to ωi + 1 and has probability δ > 0.
If firm i makes a cost-reducing investment yi at a cost cri(yi), then it achieves a prob-
abilistic reduction of its cost state. In our numerical examples, we assume a quadratic
investment cost function, cri(y) =Diy

2. Total per-period payoff is then the difference of
the Cournot profit and the investment cost,

πi(qi� yi� q−i� y−i;ω) = πC
i (qi� q−i;ω)− cri(yi)

= Pi(q1� q2)qi − ci(qi;ωi)−Diy
2
i �

We assume a transition function of the form (19) with the investment level yi replac-
ing the Cournot quantity. Assuming independence of the depreciation probabilities and
the investment transition function then results in the transition probabilities (see also
Besanko and Doraszelski (2004))

Pri[ωi − 1|yi;ωi] = Fyi
1 + Fyi

(1 − δ) for 2 ≤ωi ≤ ω̂i� (20)

Pri[ωi + 1|yi;ωi] = 1
1 + Fyi

δ for 1 ≤ωi ≤ ω̂i − 1� (21)

Pri[ωi|yi;ωi] = 1 − Pri[ωi − 1|yi;ωi]
(22)

− Pri[ωi + 1|yi;ωi] for 2 ≤ωi ≤ ω̂i − 1�

The remaining transition probabilities are

Pri[1|yi;1] = 1 − Pri[2|yi;1]� (23)

Pri[ω̂i|yi; ω̂i] = 1 − Pri[ω̂i − 1|yi; ω̂i]� (24)

Substituting the expressions for payoffs and transition probabilities into the equilib-
rium equations (16) and (17) yields a system of equilibrium equations for the model. The
static Cournot game played in each period does not affect the transition probabilities
and so we can solve the two equations at each state that are derived from differentiating
with respect to the production quantities q1 and q2 independently from the remaining
equations. The remaining system consists of four equations for each state ω = (ω1�ω2)

and thus has a total of 4|ω̂1||ω̂2| equations and unknowns. The degree of each equation
is 4.
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8.2 Solving the equilibrium equations with Bertini

Since the unit cost ωi may increase or decrease, we cannot solve the equations state
by state as in the learning-by-doing model. Instead we need to solve a single system of
equations.12

8.2.1 Two states for each firm We describe the solution of the cost-reducing investment
game with depreciation for the parameter values β = 0�95, D1 =D2 = 1, F = 0�2, and δ =
0�1. The parameters for the utility functions are again σ = 2, γ = 3/2, and w = 100/3. Each
firm can be in one of two states. We set Ω1 = Ω2 = {1�5} (in a slight abuse of previous
notation).

We first solve the Cournot game for each state. The production quantities of firm 1
are

q1(5�5) = 3�2736� q1(5�1) = 2�4664�

q1(1�5) = 38�224� q1(1�1) = 36�600�

For this model with 2 × 2 = 4 states, there are 16 equations and variables. The result-
ing Bezout number is 416 = 4,294,967,296. By utilizing symmetry, we simplify our prob-
lem to 8 equations and variables with a total Bezout number of 48 = 65,536. Utilizing
m-homogeneity, we reduce the number of paths to 3328. It took us 1 hour 40 minutes
to solve this problem. We found a total of 589 finite, that is, complex and real, solutions
that lie in affine space, 44 of which are real. We had no path failures when using adaptive
precision.13 Only one of those real solutions is economically relevant. The investment
levels of firm 1 are

y1(5�5) = 3�306� y1(5�1) = 3�223� y1(1�5) = 0�763� y1(1�1) = 0�736�

resulting in the following values of the value function:

V1(5�5) = 816�313� V1(5�1) = 794�329�

V1(1�5) = 926�059� V1(1�1) = 895�570�

8.2.2 Three states for each firm We choose Ω1 = Ω2 = {1�5�10} and our other parame-
ters as in the two-state case. The production quantities of firm 1 in the additional high-
cost states are q1(10�10) = 1�1574 and

q1(10�5) = 1�0648� q1(10�1) = 0�70015�

q1(5�10) = 3�3975� q1(1�10) = 37�915�

12We perform all calculations and derive the final system in Mathematica. The Mathematica file is avail-
able at http://www.business.uzh.ch/professorships/qba/publications/Software.html.

13If we do not use adaptive precision, we can finish computations in just under 3 minutes. However,
then 396 paths fail to converge. Nevertheless we still obtain all finite solutions. Clearly, if we could prove
that all equilibria are regular solutions to the polynomial system of equilibrium equations, then we could
relax the precision parameters in Bertini and thus significantly reduce both the computational effort and
the running time.

http://www.business.uzh.ch/professorships/qba/publications/Software.html
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Table 5. Equilibrium investment levels y1 and value function V1.

ω1\ω2 10 5 1

10 3�42 705�00 3�31 680�31 3�24 663�01
5 3�78 820�36 3�70 789�73 3�62 765�53
1 0�86 945�48 0�83 911�76 0�80 878�89

Solving the system of equilibrium equations for the three-state model now poses sig-
nificantly more problems than the two-state case. The initial system has 36 equations
and unknowns. The Bezout number is 436 ≈ 4�72 · 1021. After exploiting symmetry and
using some algebraic operations to simplify some equations, we obtain a system that
has 21 equations and unknowns. Its Bezout number is 1,528,823,808. This system, how-
ever, is still unsolvable on a single laptop if we use the standard homotopy approach.
For this reason, we now apply the splitting approach from Appendix D. We split the sys-
tem into two subsystems that are both small enough to be solvable. In our example,
the first system has M1 = 358 nonsingular solutions. The second system has M2 = 4510
nonsingular solutions. Therefore, if we focus only on the nonsingular solutions, we have
358×4510 = 1,614,580 paths to track when we combine the two subsystems via a param-
eter continuation homotopy. Note that this is an order of magnitude smaller than taking
the system as a whole. We obtain a unique nonsingular equilibrium; see Table 5. The
time to solve this on a single core is over a week.14

9. Conclusion

We summarize the paper and discuss the current limitations of all-solution methods.

9.1 Summary

This paper describes state-of-the-art techniques for finding all solutions of polynomial
systems of equations, and illustrates these techniques by computing all equilibria of
both static and dynamic games with continuous strategies. The requirement of poly-
nomial equations may, at first, appear very restrictive. In our first application—a static
Bertrand pricing game—we show how certain types of nonpolynomial equilibrium con-
ditions can be transformed into polynomial equations. We also show how, with repeated
application of the polynomial techniques, we can deal with first-order conditions that
are necessary but not sufficient. Finally, this example also depicts the power of the
parameter-continuation homotopy approach. This approach greatly reduces the num-
ber of homotopy paths that need to be traced and, therefore, increases the size of models
that we can analyze. When handled carefully, it even allows us to trace out the equilib-
rium manifold.

14The files are available at http://www.business.uzh.ch/professorships/qba/publications/Software.
html.

http://www.business.uzh.ch/professorships/qba/publications/Software.html
http://www.business.uzh.ch/professorships/qba/publications/Software.html
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We also apply the all-solution techniques to two stochastic dynamic games of in-
dustry competition and check for equilibrium uniqueness. In the first application—
a learning-by-doing model of industry competition—the equilibrium system separates
into many small systems of equations that can be solved sequentially. As a result, we can
solve specifications of this model with many states. In our second application—a model
with cost-reducing investment and cost-increasing depreciation—such a separation of
the equilibrium system is impossible. Solving the resulting equilibrium system requires
tracing a huge number of paths. On a single laptop, we can solve specifications of the
model with only a small number of states.

9.2 Current limitations and future work

For stochastic dynamic games, the number of equations grows exponentially in the
number N of players and polynomially (with degree N) in the number of states. In turn,
the Bezout number grows exponentially in the number of nonlinear equations. Addi-
tionally, the degree of the polynomials is essential, which limits the parameter choice
for the exponents in the utility functions. As a result, the number of paths that an all-
solution method must trace grows extremely fast in the size of the economic model.
This growth clearly limits the size of problems we can hope to solve.

Modern policy-relevant models quickly generate systems of polynomial equations
with thousands of equations. For example, the model in Besanko et al. (2010) has up to
900 states and 1800 equations. Finding all equilibria of models of this size is impossi-
ble with the computer power available as of the writing of this paper and it will remain
out of reach for the foreseeable future. However, we will likely be able to solve smaller
models such as the dynamic model of capacity accumulation of Besanko and Doraszel-
ski (2004) with at most 100 states within a few years. Progress will come on at least three
frontiers. First, computer scientists have yet to optimize the performance of software
packages such as Bertini. Second, the all-solution homotopy methods are ideally suited
for parallel computations. Our initial experience has been very promising. So as soon as
the existing software has been adapted to large parallel computing systems, we will see
great progress in the size of the models we can analyze with the methods described in
this paper. Third, methodological advances such as the equation splitting approach will
also help us to solve larger systems.

Appendix A: Homogenization

The all-solution homotopy method presented in Section 3.3 has the unattractive feature
that it must follow diverging paths. Homogenization of the polynomials greatly reduces
the computational effort to track such paths.

Definition 8. The homogenization f̂i(z0� z1� � � � � zn) of the polynomial fi(z1� � � � � zn) of
degree di is defined by

f̂i(z0� z1� � � � � zn)= z
di
0 fi

(
z1

z0
� � � � �

zn

z0

)
�
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Effectively, each term of f̂i is obtained from multiplying the corresponding term of fi
by the power of z0 that leads to a new degree of that term of di. So if the term originally

had degree dij , then it is multiplied by z
di−dij
0 . Performing this homogenization for each

polynomial fi in the system

F(z1� � � � � zn)= 0 (25)

leads to the transformed system

F̂(z0� z1� � � � � zn) = 0� (26)

For convenience, we use the notation ẑ = (z0� z1� � � � � zn) and write F̂(ẑ) = 0. By con-
struction, all polynomials f̂i, i = 1� � � � � n, are homogeneous and so for any solution b̂ of

F̂(ẑ) = 0, it holds that F̂(λb̂) = 0 for any complex scalar λ ∈ C. So the solutions to system
(26) are complex lines through the origin in Cn+1.

Definition 9. The n-dimensional complex projective space CPn is the set of lines in
Cn+1 that go through the origin. The space Cn+1 is called the affine space.

A point in projective space CPn corresponds to a line through the origin of the
affine space Cn+1. Let [b̂] ∈ CPn denote a point in CPn. Then there is a point b̂ =
(b̂0� b̂1� � � � � b̂n) ∈ Cn+1 \{0} that determines this line. We denote the line [b̂] by (b̂0 : b̂1 : · · · :
b̂n) to distinguish it from a single point. The notation (z0 :z1 : · · · :zn) is called the homo-
geneous coordinates of CPn. Note, however, that this notation is not unique: we can take
any λb̂ with λ ∈ C \ {0} as a representative. Furthermore, (0 : 0 : · · · : 0) is not a valid point
in projective space. Thus for any point (b̂0 : · · · : b̂n), there exists at least one element
b̂i �= 0.

There is a one-to-one relationship between the solutions of system (25) in Cn and the
solutions of system (26) in Cn+1 with b̂0 �= 0. If b is a solution to (25), then the line through
b̂ = (1� b), that is, [b̂] ∈ CPn, is a solution to (26). For the converse, if (b̂0 : b̂1 : · · · : b̂n) with

b̂0 �= 0 is a solution to (26), then the point ( b̂1
b̂0
� � � � � b̂n

b̂0
) is a solution of (25).

One of the advantages of the homogenized system (26) is that it can model “infinite”
solutions. If we have a line {(λb) | λ ∈ C} ⊂ Cn, b ∈ Cn \ {0}, and look at the corresponding
line {(1 :λb1 : · · · :λbn) | λ ∈ C} in projective space, then for any λ, ( 1

λ :b1 : · · · :bn) is also a
valid representation of that point on the projective line. So if ‖λ‖ → ∞, then ‖ 1

λ‖ → 0 and
we are left with the point (0 :b1 : · · · :bn). Note that ‖λ‖ → ∞ in the affine space means
‖λb‖ → ∞. Thus we traverse the line to “infinity.” This observation leads to the following
definition.

Definition 10. Consider the natural embedding of Cn with coordinates (z1� � � � � zn)

in the projective space CPn with homogeneous coordinates (z0 : · · · :zn). Then we call
points (0 :b1 : · · · :bn) ∈ CPn points at infinity.

The value b̂0 = 0 for a solution b̂ to F̂ implies f̂i(b̂0 : b̂1 : · · · : b̂n) = f
(di)
i (b̂1� � � � � b̂n)= 0.

Therefore, the solutions at infinity of F̂(ẑ) = 0 correspond to the solutions to the system
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(f
(d1)
1 � � � � � f (dn)n ) = 0. The fact that we now have a representation of solutions at infinity

leads to a new version of Bezout’s theorem for projective space.

Theorem 6 (Bezout’s Theorem in Projective Space CPn). If system (26) has only a finite
number of solutions in CPn and if d is the Bezout number of F , then it has exactly d solu-
tions (counting multiplicities) in CPn.

If we view the system of equation (26) in affine space Cn+1 instead of in complex pro-
jective space CPn, then it is actually underdetermined because it consists of n equations
in n + 1 unknowns. For a computer implementation of a homotopy method, however,
we need a determinate system of equations. For this purpose, we add a simple normal-
ization. Using the described relationship between solutions of the two systems (25) and
(26), we can now introduce a third system to find the solutions of system (25). Define a
new linear function

u(z0� z1� � � � � zn) = ξ0z0 + ξ1z1 + · · · + ξnzn

with random coefficients ξi ∈ C. (The nongeneric cases are where the normalization line
is parallel to a solution “line.”) Now define

f̃i(z0� z1� � � � � zn) := f̂i(z0� z1� � � � � zn)� i = 1� � � � � n�
(27)

f̃0(z0� z1� � � � � zn) := u(z0� z1� � � � � zn)− 1�

The resulting system of equations

F̃ = (f̃0� f̃1� � � � � f̃n) = 0 (28)

has n + 1 equations in n + 1 variables. Note that the system F̃(ẑ) has the same total
degree d as the system F(z) in the original system of equations (25). As a start system,
we choose

Gi(z0� z1� � � � � zn)= z
di
i − z

di
0 � i = 1� � � � � n�

(29)
G0(z0� z1� � � � � zn)= u(z0� z1� � � � � zn)− 1�

We write the resulting system as G(ẑ) = 0 and define the homotopy

H(t� ẑ) = tF̃(ẑ)+ eγi(1 − t)G(ẑ) (30)

for a γ ∈ [0�2π). To illustrate a possible difficulty with this approach, we examine the
system of equations (1)–(3) that we derived for the Bertrand price game in Section 2.2.

Example 4. After homogenization of the equilibrium system (1)–(3) in the variables px,
py , and Z with the variable x0, we obtain the polynomial equations

0 = −p2
xx

4
0 −p2

yx
4
0 +Z2p2

xp
2
y�

0 = −2700x10
0 + 2700pxx

9
0 + 8100Z2p2

xx
6
0 − 5400Z2p3

xx
5
0 + 51Z3p6

xx
1
0 − 2Z3p7

x�

0 = −2700x10
0 + 2700pyx

9
0 + 8100Z2p2

yx
6
0 − 5400Z2p3

yx
5
0 + 51Z3p6

yx
1
0 − 2Z3p7

y �
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The solutions at infinity are those for which x0 = 0. In this case, the system simplifies as

Z2p2
xp

2
y = 0� −2Z3p7

x = 0� −2Z3p7
y = 0�

After setting Z = 0, all equations hold for any values of px and py . There is a contin-
uum of solutions at infinity. Such continua can cause numerical difficulties for the path-
following procedure.

The following theorem now states that in spite of the previous example, our paths
converge to the relevant isolated solutions.

Theorem 7. Let the homotopy H be as in (30) with Bezout number d. Then the following
statements hold for almost all γ ∈ [0�2π):

(i) The homotopy has d continuous solution paths.

(ii) Each path converges either to an isolated nonsingular solution or to a singular15

solution, that is, one where the rank of the Jacobian drops.

(iii) If b is an isolated solution with multiplicity m, then there are m paths converging
to it.

(iv) Paths are monotonically increasing in t, that is, the paths do not bend backward.

Now we can apply the homotopy H as defined in equation (30) and find all solutions
of the system (28). There will be no diverging paths. From the solutions of (28) we easily
obtain the solutions of the original system (25).

An additional advantage of the above approach lies in the possibility to scale our so-
lutions via u. If a solution component zi becomes too large, then this will cause numeri-
cal problems, for example, the evaluation of polynomials at such a point becomes rather
difficult. Thus if something like this happens, we pick a new set of ξi. Furthermore, we
eliminated the special case of infinite paths and we do not have to check whether the
length of the path grows too large. Instead every diverging path has become a converg-
ing path, so while tracking a path, we do not need to check whether the length of the
path exceeds a certain bound.

Theoretically we have eliminated the problem of solutions at infinity. Note that the
problem of diverging paths still remains in practice. A solution b belongs to a diverging
path if b0 = 0. We still need to decide when b0 becomes zero numerically. Thus there
is no absolute certainty if a path converges to a solution at infinity or if the solution is
extremely large. However, we are in the convergence zone of Newton’s method and can
quickly sharpen our solutions to an arbitrary precision.

Remark 1. Here we attempt to give some intuition for the problem of infinite paths.
Take two lines L1 = {(x1�x2) | x1 +a12x2 +b1 = 0} and L2 = {(x1�x2) | x1 +a22x2 +b2 = 0}
with a12� a22 ∈ R. Then there are three possibilities for L1 ∩ L2. First L1 ∩ L2 = L1,

15This might be an isolated root with multiplicity higher than 1, for example, a double root of the system
F , or a nonisolated solution component as in Example 4.
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so a12 = a22 and b1 = b2. Second, L1 ∩ L2 = {p} for some point p ∈ R2. Last, we have
L1 ∩ L2 = ∅, that is, the lines are parallel and so a12 = a22 but b1 �= b2. By using projec-
tive space, we eliminate the last possibility by adding infinity where the two lines can
meet. So in projective space, the lines are given by the zero sets of the two polynomials
x1 + a12x2 + b1x0 and x1 + a22x2 + b2x0. Clearly (0 :−a12 : 1) is a common zero for these
polynomials if a12 = a22. So in projective space CPn, n linear homogeneous polynomials
that are not pairwise identical intersect at exactly one point.

Bezout’s theorem generalizes this idea to n polynomials. However, the theorem im-
plicitly embeds the system of polynomials in projective space. Therefore, we have to
consider the possibility that solutions are at infinity and thus the paths that belong to
them diverge. The case that one of those intersection points lies at infinity is equivalent
to demanding that z0 = 0. This is clearly a nongeneric case. But the systems that inter-
est us are highly nongeneric, the reason being that they are sparse. This means that for
a degree d polynomial in n variables there are

(n+d
d

)
monomials of degree equal to or

smaller than d, but most of their coefficients are zero, which is a nongeneric condition.
Thus those systems tend to have many solutions at infinity.

Appendix B: m-homogeneous Bezout number

The number of paths d grows rapidly with the degree of individual equations. For many
economic models, we believe that there are only a few (if not unique) equilibria, that
is, our systems have few real solutions and usually even fewer economically meaningful
solutions. As a result, we may have to follow a large number of paths that do not yield
useful solutions. As we have seen in Example 4, there may be continua of solutions at
infinity, which can cause numerical difficulties. Therefore, it would be very helpful to
reduce the number of paths that must be followed as much as possible.

Two approaches for a reduction in the number of paths exist. The first approach sets
the homogenized polynomial system not into CPn but into a product of m projective
spaces CPn1 × · · · × CPnm . For this purpose, the set of variables is split into m groups.
In the homogenization of the original polynomial F , each group of variables receives a
separate additional variable; thus this process is called m-homogenization. The result-
ing bound on the number of solutions, called the m-homogeneous Bezout number, is
often much smaller than the original bound and thus leads to the elimination of paths
tending to solutions at infinity. In this paper, we do not provide details on this approach,
but show only its impact in our computational examples. We refer the interested reader
to Sommese and Wampler (2005) and the citations therein. The first paper to introduce
m-homogeneity appears to be Morgan and Sommese (1987).

The second approach to reducing the number of paths is the use of parameter-
continuation homotopies. We believe that this approach is perfectly suited for economic
applications.

Appendix C: Parameter-continuation homotopy

Economic models typically make use of exogenous parameters such as risk aversion co-
efficients, price elasticities, cost coefficients, or many other prespecified constants. Of-
ten we do not know the exact values of those parameters and so we would like to solve
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the model for a variety of different parameter values. Clearly solving the model each
time “from scratch” proves impractical whenever the number of solution paths is very
large. The parameter continuation homotopy approach enables us to greatly accelerate
the repeated solution of an economic model for different parameter values. After solv-
ing one instance of the economic model, we can construct a homotopy that alters the
parameters from their previous to their new values and allows us to track solution paths
from the previous solutions to new solutions. Therefore, the number of paths we need
to follow is greatly reduced.

The parameter continuation approach rests on the following theorem, which is a
special case of a more general result; see Sommese and Wampler (2005, Theorem 7.1.1).

Theorem 8 (Parameter Continuation). Let F(z�q) = (f1(z�q)� � � � � fn(z�q)) be a system
of polynomials in the variables z ∈ Cn with parameters q ∈ Cm,

F(z�q) :Cn × Cm → Cn�

Additionally, let q0 ∈ Cm be a point in the parameter space, where k = maxq |{z | F(z�q) =
0;det(∂F∂z (z�q0)) �= 0}| is the number of nonsingular isolated solutions. For any other set of
parameters q1 and a random γ ∈ [0�2π), define

ϕ(s) = eiγs(s − 1)+ sq1 + (1 − s)q0�

Then the following statements hold.

(i) k= |{z | F(z�q) = 0;det(∂F∂z (z�q)) �= 0}| for almost all q ∈ Cm.

(ii) The homotopy F(z�ϕ(s)) = 0 has k nonsingular solution paths for almost all γ ∈
[0�2π).

(iii) All solution paths converge to all isolated nonsingular solutions of F(z�ϕ(1)) = 0
for almost all γ ∈ [0�2π).

The theorem has an immediate practical implication. Suppose we already solved the
system F(z�q0) = 0 for some parameter vector q0. Under the assumption that this sys-
tem has the maximal number k of locally isolated solutions across all parameter values,
we can use this system as a start system for solving the system F(z�q1) = 0 for another
parameter vector q1. The number of paths that need to be tracked is k instead of the
Bezout number d or some m-homogeneous Bezout number. In our applications, k is
much smaller (sometimes orders of magnitude smaller) than these upper bounds. As a
result, the parameter continuation homotopy drastically reduces the number of paths
that we must track. More importantly, no path ends at a solution at infinity for almost all
q1 ∈ Cn. As we observe in our examples, exactly these solutions often create numerical
problems for the path-tracking software, in particular if there are continua of solutions
at infinity as in Example 4. And due to those numerical difficulties, the running times for
tracking these paths is often significantly larger than for tracking paths that end at finite
solutions. In sum, we believe that the parameter-continuation homotopy approach is of
great importance for finding all equilibria of economic models.

A statement similar to that of Theorem 8 holds if we regard isolated solutions of some
fixed multiplicity, but we then have to track paths that have the same multiplicity. Track-
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ing such paths requires a lot more computational effort than nonsingular paths. The
homotopy continuation software Bertini enables the user to track such paths since it
allows for user-defined parameter-continuation homotopies.

Appendix D: A splitting approach for solving larger systems

In our application of the all-solutions methods to dynamic stochastic games, we quickly
run into problems that are too large to be solved on a single computer. We now briefly
describe an approach that enables us to increase the size of problems we can solve.

A splitting approach16 breaks the square system

F(z1� z2� � � � � zn) = (f1� f2� � � � � fn)(z1� z2� � � � � zn)= 0

of polynomial equations into two subsystems F1 = (f1� � � � � fp) and F2 = (fp+1� � � � � fn).
Similarly, the variables are grouped:

(z1� z2� � � � � zn)= (x� y) = (x1� � � � � xp� y1� � � � � yn−p)�

Thus, we can write the entire system as

F1(x1� � � � � xp� y1� � � � � yn−p)= (f1� � � � � fp)(x1� � � � � xn� y1� � � � � yn−p)= 0�

F2(y1� � � � � yn−p�x1� � � � � xp)= (fp+1� � � � � fn)(y1� � � � � yn−p�x1� � � � � xp) = 0�

Clearly, F1 and F2 are not square systems of polynomial equations. We now solve the
systems

F1(x1� � � � � xp� y1� � � � � yn−p)= 0�

yi = ai� i = 1� � � � � n−p�

and

F2(y1� � � � � yn−p�x1� � � � � xp)= 0�

xj = bj� j = 1� � � � �p�

where a ∈ Cn−p and b ∈ Cp are random complex numbers. Each of these two new square
systems has a smaller (m-homogeneous) Bezout number than the original system.

Now suppose that we obtain finite solution sets M1 and M2 for each of the two sys-
tems, respectively. Any pair (x∗� a� y∗� b) ∈ M1 ×M2 is a solution to the following square
system of polynomial equations in the unknowns x1� � � � � xp, y1� � � � � yn−p, r1� � � � � rn−p,
and s1� � � � � sp:

F1(x1� � � � � xp� r1� � � � � rn−p) = 0�

ri − ai = 0� i = 1� � � � � n−p�

F2(y1� � � � � yn−p� s1� � � � � sp)= 0�

sj − bj = 0� j = 1� � � � �p�

16We thank Jonathan Hauenstein for suggesting this method to us.
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This system is now the start system for the parameter-continuation homotopy

F1(x1� � � � � xp� r1� � � � � rn−p) = 0�

(1 − t)(ri − ai)+ t(ri − yi)+ (1 − t)teiγ = 0� i = 1� � � � � n−p�

F2(y1� � � � � yn−p� s1� � � � � sp)= 0�

(1 − t)(sj − bj)+ t(sj − xj)+ (1 − t)teiγ = 0� j = 1� � � � �p�

where r and s are the parameters, and all elements in M1 × M2 are start points. Thus
there are |M1| · |M2| paths to track. Observe that for t = 1, we obtain a system that is
equivalent to the original system F(z) = 0.

To see why this approach works, note that our parameters r and s were chosen ran-
domly. Statement (i) of Theorem 8 states that for almost all choices of those parameters,
we have the maximal number of isolated roots. Thus all the requirements of the theorem
are met and our homotopy converges to all isolated solutions.

A judicious separation of the original equations produces two subsystems with re-
spective Bezout numbers that are roughly equal to the square root of the Bezout number
of the original system. This significant reduction in the number of paths to be tracked
may make it feasible to solve the subsystems even if the complete system cannot be
solved in reasonable time. Additionally, if the number of finite solutions of the subsys-
tems is also not too large, then the parameter-continuation homotopy will generate all
finite solutions of the original system of equations.

In Section 8.2.2, this splitting approach enables us to solve a system of polynomial
equations that otherwise would have been too large to be solvable on a single laptop.
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