Supplementary Material

Supplement to “Does affirmative action lead to mismatch? A new test and evidence”

Peter Arcidiacono
Department of Economics, Duke University and NBER

Esteban M. Aucejo
Department of Economics, Duke University

Hanming Fang
Department of Economics, University of Pennsylvania and NBER

Kenneth I. Spenner
Department of Sociology, Duke University

Appendix B: Details about the implementation of the nonparametric estimation in Section 6

We propose an empirical strategy that consists of the following steps:

Step 1. Invoking Kotlarski’s (1967) theorem, we separately recover the marginal distributions of X_C, X_U, and X_S from the observed joint distribution of (W_U, W_S).

Step 2. We draw random samples of $\{X_{Ci}, X_{Ui}, X_{Si}\}$ from the marginal distributions of X_C, X_U, and X_S recovered in Step 1.

Step 3. We obtain samples of (W_{Ui}, W_{Si}) from the random samples of (X_{Ci}, X_{Ui}, X_{Si}) generated in Step 2 and then recover a sample of Y_i conditional on (W_{Ui}, W_{Si}) using multiple imputation methods.\(^{29}\)

Step 4. We run regressions of Y on X_C, X_U, and X_S using the pseudo-sample $\{Y_i, X_{Ci}, X_{Ui}, X_{Si}\}$ simulated above to estimate γ_C, γ_U, and γ_S, and to perform variance decomposition.

We now provide more details about each of the steps, beginning with recovering the marginal distributions of X_C, X_U, and X_S. Let

$$\Psi(t_1, t_2) = \mathbb{E} \exp(it_1 W_U + it_2 W_S)$$

\(^{29}\)See Rubin (1987) for an extensive description of this methodology.

denote the characteristics function for the observed joint random vector \((W_U, W_S)\) and let

\[
\Psi_1(t_1, t_2) \equiv \frac{\partial \Psi(t_1, t_2)}{\partial t_1} = \mathbb{E}[iW_U \exp(it_1W_U + it_2W_S)]
\]

(B2)

\(\Psi_1(t_1, t_2)\) denote the derivative of \(\Psi(\cdot, \cdot)\) with respect to its first argument. Then the Kotlarski theorem shows that the characteristic functions for random variables \(X_C, X_U,\) and \(X_S\) are, respectively, given by

\[
\Psi_{X_C}(t) = \exp\left(\int_0^t \frac{\Psi(0, t_2)}{\Psi(0, t_2)} dt_2\right),
\]

\[
\Psi_{X_U}(t) = \frac{\Psi(t, 0)}{\Psi_{X_C}(t)},
\]

\[
\Psi_{X_S}(t) = \frac{\Psi(0, t)}{\Psi_{X_C}(t)}.
\]

Finally the characteristic functions of these three random variables uniquely determines the probability density function via an inversion formula. Let \(f_{X_K}(x_K)\) for \(K \in \{C, U, S\}\) be estimated by replacing \(\Psi(\cdot, \cdot)\) and \(\Psi_1(\cdot, \cdot)\) with their estimates above. Applying Kotlarski’s decomposition to \(\{W_U, W_S\}\) allows to generate data on \(\{X_{Ci}, X_{Ui}, X_{Si}\}\) and, therefore, \(\{W_{Ui}, W_{Si}\}\) (Steps 2 and 3) by simply drawing from the marginal distributions.

We are now in a position to describe the somewhat standard estimation procedure needed to carry out Step 1.\(^{30}\) The key is to estimate \(\Psi(\cdot, \cdot)\) and \(\Psi_1(\cdot, \cdot)\) by their sample analogs: given a sample \(\{(W_U^j, W_S^j)\}_{j=1}^n\),

\[
\hat{\Psi}(t_1, t_2) = \frac{1}{n} \sum_{j=1}^n \exp(it_1W_U^j + it_2W_S^j),
\]

\[
\hat{\Psi}_1(t_1, t_2) = \frac{1}{n} \sum_{j=1}^n iW_U^j \exp(it_1W_U^j + it_2W_S^j).
\]

The characteristic functions \(\Psi_{X_K}(t)\) for \(K \in \{C, U, S\}\) can in turn be estimated by replacing \(\Psi(\cdot, \cdot)\) and \(\Psi_1(\cdot, \cdot)\) with their estimates above. Applying Kotlarski’s decomposition to \(\{W_U, W_S\}\) allows to generate data on \(\{X_{Ci}, X_{Ui}, X_{Si}\}\) and, therefore, \(\{W_{Ui}, W_{Si}\}\) (Steps 2 and 3) by simply drawing from the marginal distributions.

The next step, Step 4, is to obtain a sample of grades (i.e., \(Y_i\)) conditional on \(W_{Ui}\) and \(W_{Si}\) by multiple imputation. Here we follow Rubin (1987). The basic steps of Rubin multiple imputation are as follows:

\(^{30}\)See Krasnokutskaya (2011) for similar estimation procedure. Horowitz (1998, Chapter 4) described some useful suggestions for issues related to smoothing.
Supplementary Material

Does affirmative action lead to mismatch? 3

(i) Calculate $V = (W'W)^{-1}, \hat{\beta} = VW'Y$, and $\hat{Y} = W'\hat{\beta}$, where $W = \{W_U, W_S\}$.

(ii) Draw a random g from χ^2 distribution with degree of freedom $n_{\text{obs}} - r$.

(iii) Calculate $\sigma^2_s = (Y - \hat{Y})(Y - \hat{Y})/g$.

(iv) Draw an r-dimensional Normal random vector $D \sim N(0, I_r)$, where I_r is the identity matrix of dimension r.

(v) Calculate $\hat{\beta}_s = \hat{\beta} + \sigma V^{1/2}D$, where $V^{1/2}$ is the triangular square root of V obtained by the Cholesky decomposition.

(vi) Calculate predicted values $\hat{Y}_i = W'_i\hat{\beta}_s$.

(vii) For each missing value, find the respondent whose \hat{Y} is closest to \hat{Y}_i and take Y of this respondent as the imputed value (predictive mean matching).31

We then regress the generated outcomes on the generated regressors.

References

31To test for robustness of the results, we also implemented a nonparametric approach to recover Y_i. Basically, we draw a sample of Z_i conditional on $\{W_{U_i}, W_{S_i}\}$ from the observed conditional distribution $G(Y|W_{U_i}, W_{S_i})$, which was obtained using the Epanechnikov kernel $(K(u) = \frac{3}{4}(1 - u^2)1_{(|u| \leq 1)})$. The smoothing parameter was selected by following a refined plug-in method, which tries to find the bandwidth that minimizes the mean integrated square error. Results obtained using this strategy did not differ significantly from those using the multiple imputation technique.