Does affirmative action lead to mismatch?
A new test and evidence

PETER ARCIDIACONO
Department of Economics, Duke University and NBER

ESTEBAN M. AUCEO
Department of Economics, Duke University

HANMING FANG
Department of Economics, University of Pennsylvania and NBER

KENNETH I. SPENNER
Department of Sociology, Duke University

We argue that once we take into account the students’ rational enrollment decisions, mismatch in the sense that the intended beneficiaries of affirmative action admission policies are made worse off ex ante can only occur if selective universities possess private information. Ex ante mismatch occurs when revelation of this information would have changed the student’s choice of school. This necessary condition for mismatch provides the basis for a new test. The test is implemented using data from the Campus Life and Learning Project at Duke University. Evidence shows that Duke does possess private information that is a statistically significant predictor of students’ post-enrollment academic performance. Further, this private information is shown to affect the subjective measures of students’ satisfaction as well as their persistence in more difficult majors. We also propose strategies to evaluate more conclusively whether the presence of Duke private information has generated mismatch.

Key words. Mismatch, private information, affirmative action.

JEL classification. D8, I28, J15.

Peter Arcidiacono: psarcidi@econ.duke.edu
Esteban M. Aucejo: esteban.aucejo@duke.edu
Hanming Fang: hanming.fang@econ.upenn.edu
Kenneth I. Spenner: kspen@soc.duke.edu

We would like to thank the editor, two anonymous referees, Judy Chevalier, Joe Hotz, Caroline Hoxby, Christine Jolls, Jon Levin, Jim Levinsohn, Tong Li, Linda Loury, Jeff Smith, Justin Wolfers, and seminar participants at Brown, Emory, South Carolina, Vanderbilt, Penn, Stanford GSB, NBER Public Economics and Higher Education Meetings, and ERID Law and Economics Conference at Duke for helpful comments. The authors gratefully acknowledge support for this research provided by grants from the Andrew W. Mellon Foundation and Duke University. All remaining errors are ours.

DOI: 10.3982/QE83
1. Introduction

The use of racial preferences in college and university admissions has generated much debate. Proponents of racial preferences argue that race-conscious admissions are important both for helping minorities overcome the legacy of institutionalized discrimination and for majority students to receive the benefits from diverse classrooms. Opponents of racial preferences assert that race-conscious admissions are unfair and may actually be damaging to the intended beneficiaries by placing them at institutions where they are unlikely to succeed.

Recently the controversy over race-conscious admission policies has increasingly moved from a normative to a positive perspective. On one front, several papers attempted to empirically examine the educational benefits of attending racially diverse colleges. For example, Black, Daniels, and Smith (2001) found a positive relationship between the proportion of blacks in the college attended and the postgraduate earnings in the National Longitudinal Survey of Youth; Arcidiacono and Vigdor (2010), using information on graduates of 30 selective universities in the College and Beyond data, found only weak evidence of any relationship between collegiate racial composition and postgraduation outcomes of white or Asian students. Duncan, Boisjoly, Levy, Kremer and Eccles (2006), exploiting conditionally random roommate assignment at one large public university, found that cross-racial exposure influences individual attitudes and friendship patterns.

A second front, spurred by the provocative article of Sander (2004) and followed up by Ayres and Brooks (2005), Ho (2005), Chambers, Clydesdale, Kidder and Lempert (2005), Barnes (2007), and Rothstein and Yoon (2008), attempts to empirically examine whether the effects of affirmative action policies on the intended beneficiaries is positive or negative. These papers essentially test for the so-called mismatch hypothesis, that is, whether the outcomes of minority students might have been worsened as a result of attending a selective university relative to attending a less selective school.

Even if some of the ex post outcomes for minority students are worse under affirmative action, it still may be the case that minority students are better off ex ante under affirmative action. To illustrate this point, suppose that one can convincingly establish that blacks are less likely to pass bar exams after attending an elite law school. Does this necessarily mean that blacks are worse off in an ex ante expected utility sense? If attending an elite university also makes it possible for blacks to be high-profile judges and if the outcome of being a high-profile judge is valued by blacks much higher than just passing the bar exam, blacks could still be better off ex ante under affirmative action. Alternatively, it is possible that elite universities may provide amenities to minority students that more than compensate for the worse outcome measures that are examined

1In both Regents of University of California v. Bakke, 438 U.S. 265 (1978), and more recently in Grutter v. Bollinger, 539 U.S. 306 (2003), the Supreme Court ruled that the educational benefits of a diverse student body is a compelling state interest that can justify using race in university admissions.

2See Kellough (2006) for a concise introduction to various arguments for and against affirmative action.

3Arcidiacono, Khan, and Vigdor (2011) also suggested that affirmative action actually leads to less interracial interaction due to exacerbation of within-school gap of academic backgrounds between minority and majority students.
by the researcher, thus making the minority students better off ex ante in an expected utility sense.

In this paper, we take a new and complementary viewpoint of the above-mentioned literature on mismatch by bringing to the center the rational enrollment decision of the minority students who are offered admission to a selective school, possibly due to affirmative action policies. The question we ask is, “Why would students be willing to enroll themselves at schools where they cannot succeed,” as the mismatch hypothesis stipulates? Posing the question in this way immediately leads us to focus our attention on the role of asymmetric information. We show in a simple model that students’ rational enrollment decisions have important implications regarding the possibility of ex ante mismatch due to affirmative actions. We argue that a necessary condition for ex ante mismatch to occur once we take into account the minority students’ rational enrollment decisions is that the selective university has private information about the treatment effect (or value added) for the students.\footnote{Our focus is on ex ante mismatch as this is what the university has control over. Clearly ex post mismatch can result from the uncertainty in students’ educational outcomes alone.} In the absence of the selective university’s private information about the student’s treatment effect (or value added) relative to attending a nonselective university, a minority student will choose to enroll in the selective university only if her treatment effect is positive, thus there is no room for ex ante mismatch to occur. However, when the selective university has private information about a minority student’s treatment effect, it is possible that a minority student with a negative treatment effect may end up enrolling in the selective university if offered admission. The reason is simple: when the minority student decides whether to enroll in the selective university, she can only condition her decision on the event that her treatment is above its admission threshold. When the selective university’s admission threshold for the minority student is negative, due to its desire to satisfy a diversity constraint for example, it may still be optimal for a minority student with a negative treatment effect to enroll as long as the expected treatment effect conditional on admission is higher than that from the nonselective university.

The central message from the simple model is that the presence of private information by the selective university regarding the students’ treatment effect is a necessary condition for the mismatch effect as a result of affirmative action. This simple observation leads to a novel test for a necessary condition for mismatch, which is a test for whether selective universities possess private information regarding the students they admit. We emphasize that our test is only a test for necessary condition: if we find strong evidence for asymmetric information, it does not necessarily imply that mismatch has occurred. However, if we find no evidence for asymmetric information, then we can rule out mismatch without having to rely on strong unverifiable assumptions needed for the assessment of counterfactual outcomes.

\footnote{There is some evidence in the literature that students’ expectations about their performance are inaccurate and are updated over time. Stinebrickner and Stinebrickner (2008) have information at multiple points during the student’s college career from Berea college. They found strong evidence that students update their expectations over time and make decisions (such as the decision to drop out) based on the new information they receive through their grades.}
We propose a nonparametric method to test for asymmetric information. We assume that the researcher has access to the elite university’s assessment of the applicants, the applicants’ subjective expectation about their post-enrollment performance in the selective university, and their actual performance. We show that the celebrated Kotlarski (1967) theorem can be used to decompose the private information possessed by the applicant, the private information possessed by the selective university, and the information common to the selective university and the applicant but unobserved by the researcher. We propose an estimation method after the Kotlarski decomposition to test whether the selective university possesses private information important for the prediction of the students’ actual post-enrollment outcomes.

We use data from the Campus Life and Learning Project, which surveys two recent consecutive cohorts of Duke University students before and during college. The survey was administered to all under-represented minorities in each of the cohorts as well as a random sample of whites and Asians. The CLL provides information about the participants’ college expectations, social and family background, and satisfaction measures as well as providing confidential access to students’ academic records. The key features of the data for our purposes are that we have the Duke Admission Office’s ranking of the applicants as well as the student’s pre-enrollment expectations about their grade point averages. We also have a rich set of control variables about the students’ family and high school background.

We test whether Duke’s private information is important to outcomes such as grade point average after conditioning on what is in the student’s information set, including the private information in the student's expected grade point average. Not only is Duke’s private information important for both grades and graduation rates even after conditioning on the student’s information set, but we also find that students have virtually no private information on their probabilities of succeeding. That is, once we condition on Duke’s information set, the student’s expected grade point average is virtually uncorrelated with their grades. Duke’s private information is also shown to affect both the subjective measures of students’ satisfaction and their persistence in more difficult majors.

The remainder of the paper is structured as follows. In Section 2, we discuss the mismatch literature. In Section 3, we present a simple model of a selective university’s admission problem with rational students to clarify the key concepts of mismatch in our framework and we illustrate that the selective university’s private information is a necessary condition for mismatch to occur. In Section 4, we describe the Campus Life and Learning (CLL) Project data used in our application to test for private information. In Section 5, we provide some baseline regression results to provide some preliminary bounds on the importance of Duke and student private information in predicting the students’ performance at Duke. In Section 6, we describe a nonparametric empirical method to identify private information and present our main empirical results. In Section 7, we show that the private information Duke has on students’ future performance also affects outcomes besides just grade point average. In Section 8, we discuss three potential avenues to provide more conclusive evidence for mismatch and conclude.

6The Kotlarski theorem has been applied in the economics literature in Cunha, Heckman, and Navarro (2005) and Krasnokutskaya (2011).
2. Mismatch literature

The mismatch literature to date has focused on comparing the “outcome” (e.g., GPA, bar passage, postgraduate earnings, etc.) of the minority students enrolled in elite universities relative to the corresponding counterfactual outcome when these minority students attend less selective universities. As well summarized in Rothstein and Yoon (2008), the papers differ in how the counterfactual outcomes are assessed. For example, Sander (2004) first used a comparison of black and white students with the same observable credentials, who typically attend different law schools because of affirmative action, to estimate a negative effect of selectivity on law school grades; he then included both selectivity and grades in a regression for graduation and bar passage where he found that both selectivity and grades have a positive coefficient, with the latter much larger than the former. Combining these two findings, he concluded that, on net, preferences in law school admission in favor of black students depressed black outcomes because such preferences led black students into more selective schools, lowering their law school grades, which swamps the positive effect of attending a selective school on their graduation and passing the bar.

Ayres and Brooks (2005), Ho (2005), Chambers et al. (2005), and Barnes (2007), however, used versions of selective–nonselective comparison, that is, comparing students of the same race and same observable admission credentials who attend more and less selective schools to assess whether attending more selective schools has negative effects. All strategies used above to assess the counterfactual outcome are likely to yield biased estimates when there are applicant characteristics that are considered in admission but unobserved by researchers. For example, the selective–unselective comparisons used by Ayres and Brooks (2005), Ho (2005), Chambers et al. (2005), and Barnes (2007) are likely to underestimate the mismatch effect because those who are admitted to more selective schools are likely to have better unobserved credentials. In contrast, Sanders (2004), by attributing the blacks’ lower grades in selective schools to school selectivity instead of potential unobserved credentials, is likely to overstate the mismatch effect.

Finally, Rothstein and Yoon (2008) used both the selective–unselective and the black–white comparisons to provide bounds for the mismatch effect in law school. They found no evidence of mismatch effects on any students’ employment outcomes or on

7 Loury and Garman (1995) appear to be the predecessor of the “mismatch” literature. They found that college selectivity and performance at college both have significant effects on earnings. The earnings gain by black students from attending selective colleges are offset by worse college performance for those black students whose own SAT scores are significantly below the median of the college they attended, that is, those “mismatched” blacks.

8 Barnes (2007) also explained that the performance for black students may suffer in a selective school both because of mismatch (i.e., they are overplaced in such selective schools) or because there are race-based barriers to effective learning in selective schools.

9 Dale and Krueger (2002) proposed and applied a strategy to control for the unobservable credentials in estimating the treatment effect of attending highly selective colleges by comparing students attending highly selective colleges with others admitted to these schools but enrolled elsewhere. Ayres and Brooks (2005) and Sanders (2005a, 2005b) also attempted to approximately apply the Dale and Krueger strategy by comparing law students who reported attending their first choice schools with those who reported attending their second choices because their first choices were too expensive or too far from home.
the graduation or bar passage rates of black students with moderate or strong entering credentials, a group that makes up 25% of the sample. However, they could not conclusively find effects for the bottom 75% of the distribution due to not having enough whites with similar credentials. In the spirit of our approach, we argue that the success of the top 25% is necessary for mismatch to occur if blacks at least know the overall relationship between credentials and success while only having expectations on their own credentials. Namely, if all blacks were mismatched, then there would be no scope for students making rational decisions to attend schools where they were mismatched: there have to be some nonmismatched black students for rational mismatch to occur.

To summarize, the existing literature on the mismatch effect differs in the empirical strategy used to assess the counterfactual outcome of minority students attending less selective universities, and the evidence is mixed. We want to recast the mismatch problem in the context of rational decision-making which, as show in the next section, points us toward examining whether selective universities have private information on the future success of their students.

3. A simple model

In this section, we present a simple model to clarify the notion of ex ante mismatch and we show that a necessary condition for ex ante mismatch to occur when students make rational enrollment decisions is that the elite university possesses private information regarding the students’ treatment effect.

Consider two universities that differ in selectiveness. For convenience, suppose that only one university is selective, which we refer to as the elite university. The elite university has an enrollment capacity C, but the nonselective university, which essentially encompasses all the other options for the students in our model, does not have a capacity constraint.

Students belong to one of two racial groups, referred to as white (w) and black (b). The total number of race-r applicants is given by N_r for $r \in \{w, b\}$. Let $T_r \in \mathbb{R}$ denote the “treatment effect” of a student with race-r from attending the elite university. The treatment effect measures the difference in a student’s outcome from attending the elite university instead of her second option (which in this model is the nonelite university). Importantly, this treatment effect is determined by the quality of matching between the student’s own characteristics and the university’s characteristics. To the extent that the nonelite university is better suited to some students, T_r could be negative. In the population of race r students, T_r is distributed according to a continuous cumulative distribution function (CDF) F_r.

Let the payoff that the elite university receives from admitting a race-r student with treatment effect T_r be denoted by $\pi_U(T_r, r; \lambda)$, where $\lambda \geq 0$ indexes the elite university’s concerns for diversity with $\lambda = 0$ denoting no diversity concern and higher λ indicating stronger diversity concerns.\footnote{The exact form of the elite university’s payoff function is not important for our argument. For example, it can be a weighted average of the total treatment effects and a measure of racial diversity of the enrolled students, which is the case studied in detail in our working paper, Arcidiacono, Aucejo, Fang, and Spenner (2009).} The elite university’s admission decision is denoted by...
$a_{\lambda}(T_r, r) \in \{0, 1\}$, where $a_{\lambda}(T_r, r) = 1$ indicates admission and $a_{\lambda}(T_r, r) = 0$ is otherwise. Using the above notation, the objective of the elite university is

$$\max_{\{a_{\lambda}(.): \}} \sum_{r \in \{w, b\}} N_r \int \pi_U(T_r, r; \lambda) a_{\lambda}(T_r, r) dF_r(T_r)$$

subject to two constraints. The first constraint is the enrollment capacity constraint, which is given by

$$\sum_{r \in \{w, b\}} N_r \int a_{\lambda}(T_r, r) dF_r(T_r) \leq C.$$

The second constraint is the rational enrollment constraint by the students. However, the expression of this constraint depends on the information of the student:

- **Symmetric Information Case.** If the student’s treatment effect T_r is symmetrically known between the student and the elite university, then the rational enrollment constraint is simply

$$T_r \geq 0 \quad \text{for } r \in \{w, b\}. \quad (1)$$

That is, no student will enroll in the elite university if she knows that her treatment effect is negative.

- **Asymmetric Information Case.** If the elite university knows about T_r but the student does not, then the student’s rational enrollment constraint is

$$E[T_r | T_r \in \Omega_{\lambda, r}] \geq 0,$$ \quad (2)

where

$$\Omega_{\lambda, r} \equiv \{T_r: a_{\lambda}(T_r, r) = 1\} \quad \text{for } r \in \{w, b\}$$

is the admission set for race-r students when the elite university has diversity concern λ. That is, the student will enroll in the elite university only if her expected treatment effect, conditional on being admitted, is positive.

The effect of affirmative action on the admission sets

We capture the effect of affirmative action policies on the admission sets with the following assumption: the optimal admission sets of the elite university are such that, if $\lambda \geq \lambda'$, then

$$\Omega_{\lambda, w} \subseteq \Omega_{\lambda', w} \quad \text{and} \quad \Omega_{\lambda, b} \supseteq \Omega_{\lambda', b}.$$

That is, the set of admitted white students (weakly) shrinks and the set of admitted black students (weakly) expands as the elite university’s diversity concern increases (i.e.,
when \(\lambda \) increases).\(^{11}\) Of course, the optimal admission sets also depend on the enrollment capacity \(C \) of the elite university.

Note that under symmetric information, the rational enrollment constraint (1) ensures that no black student with negative treatment effect will enroll in the elite universities, even if they were admitted due to affirmative action. However, if \(T_r \) is the private information of the elite university, then the rational enrollment constraint (2) can be satisfied even for some students whose \(T_r \) is actually negative, resulting in what we will refer to as local mismatch. Formally, we say that affirmative action admission policy by the elite university leads to a local mismatch effect for blacks if \(T_b \in \Omega_{\lambda,b} \) such that \(T_b < 0 \) but (2) is satisfied.

A stronger notion of mismatch is “global mismatch,” which happens when blacks as a group are made worse off as a result of affirmative action policies by the elite university. To state this more formally, define

\[
\Phi_r(\lambda) = \int_{B_{\lambda,r}} T_r \, dF_r(T_r)
\]

as the total treatment effect for race-\(r \) students when the elite university’s diversity concern is \(\lambda \). The total treatment effect for blacks without affirmative action is simply \(\Phi_b(0) \).

We say that affirmative action admission policy by the elite university leads to a global mismatch effect for blacks if black students as a whole are made worse off in expectation, that is, \(\Phi_b(\lambda) < \Phi_b(0) \) for some \(\lambda \).\(^{12}\) Clearly, global mismatch implies local mismatch. It is also useful to note that the existing mismatch literature reviewed in Section 2 examines only the global mismatch effect.

Because both the local and the global notions of mismatch require that the admission set for blacks, \(\Omega_{\lambda,b} \), includes black students with negative treatment effects, and we know that students with negative treatment effects will choose to attend the elite university only when they are not fully knowledgeable about their treatment effects, we conclude that a necessary condition for mismatch to occur is that the elite university has private information regarding the students’ treatment effects. Thus, we have shown that a necessary condition for either local or global mismatch to result from affirmative action admission policy is that the elite university has private information about the students’ treatment effects.

The argument above can be substantially generalized to situations in which the students may also have private information. Denote \(X_S \) and \(X_U \), respectively, as the list of variables observed by the student and the university that will affect their payoffs if the

\(^{11}\) In Arcidiacono et al. (2009), we provided a specific specification for \(\pi_U(\cdot) \) that delivers such predictions. But these predictions are consistent with many alternative models.

\(^{12}\) In Arcidiacono et al. (2009), we assumed that the objective function for the elite university is to maximize the total treatment effect of enrolled students. Under this specification, we fully characterize the admission sets and show that global mismatch can indeed exist while the rational enrollment constraints are respected. Specifically, we show that, in the presence of the capacity constraints, \(\Phi_b(\lambda) \) increases in \(\lambda \) when \(\lambda \) is small, but decreases with \(\lambda \) when \(\lambda \) is large. When \(\lambda \) is sufficiently large, \(\Phi_b(\lambda) \) becomes lower than \(\Phi_b(0) \), implying global mismatch.
student attends the elite university. Let \(u_S(X_S, X_U) \) be the student's payoff from attending the elite university (relative to the second option). Again consider two cases. The first is the case that the elite university does not have private information, that is, when \(X_U \) is a sublist of \(X_S \). Then the student's rational enrollment constraint is

\[
E[u_S(X_S, X_U) | X_S, a_A(X_U) = 1] \geq 0. \tag{3}
\]

But since \(X_U \) is a sublist of \(X_S \), we have \(E[u_S(X_S, X_U) | X_S, a_A(X_U) = 1] = E[u_S(X_S) | X_S] \). Thus (3) ensures that the blacks will never be made worse off ex ante when the elite university's admission set for them expands as a result of affirmative action. The second case is when the elite university has private information, that is, when \(X_S \) contains variables that are not in \(X_U \). In this case, the rational enrollment constraint for the student, that is, \(E[u_S(X_S, X_U) | X_S, a_A(X_U) = 1] \geq 0 \), can be consistent with events where \(u_S(x_S, x_U) < 0 \) for some realizations of \(X_S = x_S \) and \(X_U = x_U \), that is, events with ex ante local mismatch.

Finally, our simple theoretical framework also points toward an alternative test for the presence of mismatch. Specifically, our model clearly shows that local mismatch occurs whether the student's enrollment decisions would have been different if she had access to the elite university's private information about her treatment effect. We discuss several potential approaches to implement this novel test of mismatch in Section 8.

4. The Campus Life and Learning Project data

In Section 3, we argued that once we take into account the students' rational matriculation decisions, a necessary condition for either local or global mismatch to arise is that the elite university has private information about the students' treatment effects. In our empirical section, we propose tests for private information by the elite university. If our tests reject the presence of private information by the elite university, then we can conclude that mismatch does not arise as a result of affirmative action admission policies; however, if we detect private information, it is not sufficient to establish that mismatch occurred.

In this section, we describe data from the Campus Life and Learning Project (CLL) at Duke University that will allow us to test whether Duke has private information regarding the future success of their students.\(^\text{13}\) CLL is a multiyear prospective panel study of consecutive cohorts of students enrolled at Duke University in 2001 and 2002 (graduating classes of 2005 and 2006).\(^\text{14}\) The target population of the CLL project included all undergraduate students in Duke's Trinity College of Arts and Sciences and Pratt School of Engineering. Using the students' self-reported racial ethnic group from their Duke admissions application form, the sampling design randomly selected about 356 and 246 white students from the 2001 and 2002 cohorts, respectively, all black.

\(^{13}\)A description of the CLL Project and its survey instruments can be found at http://www.soc.duke.edu/undergraduate/cll/, where one can also find the reports by Bryant, Spenner, and Martin with Rollins and Tippett (2006) and Bryant, Spenner, and Martin with Sautter (2007).

\(^{14}\)Duke is among the most selective national universities with about 6000 undergraduate students. Duke's acceptance rate for its regular applications is typically less than 20 percent.
and Latino students, about two-thirds of Asian students, and about one-third of bi-/multiracial students in each cohort. The final design across both cohorts contains a total of 1536 students, including 602 white, 290 Asian, 340 black, 237 Latino, and 67 bi-/multiracial students.

Each cohort was surveyed via mail in the summer before their initial enrollment at Duke, in which they were also asked to sign an informed consent document as well as given the option to provide confidential access to their student information records at Duke. About 78 percent of sample members (n = 1185) completed the pre-college mail questionnaire, with 91 percent of these respondents providing signed release of their institutional records for the study. In the spring semester of the first, second, and fourth college year, each cohort was again surveyed by mail. However, response rates declined in the years following enrollment with 71, 65, and 59 percent responding in the first, second, and fourth years of college, respectively.

The pre-college survey provides detailed measurement of the students’ social and family background, prior school experiences, social networks, and expectations of their college performance. In particular, students were asked

What do you realistically expect will be your cumulative GPA at Duke after your first year?

We can then relate this measure to the student’s actual first year grade point average (GPA). The in-college surveys contain data on social networks, performance attributions, choice of major, residential and social life, perception of campus climate, and plans for the future.

For those who released access to their institutional records, we also have information about their grades, graduation outcomes, test scores (SAT and ACT), and financial aid and support. Further, we have the Duke Admissions Officers’ rankings of students’ applications on six measures: achievement, curriculum, essay, personal qualities, recommendations, and test scores. Each of these rankings is reported on a five point scale. It is these rankings coupled with student expected performance that will be used to disentangle what the student knows from what the institution knows about how well the student will perform in college.

Table 1 contains summary statistics for the key variables in the CLL data set by race. The first rows reveal that there is a substantial amount of variation in entering credentials among students of different races. Asians and whites tend to have higher evaluations by Duke Admissions Officers in all six categories than black and Latino students, with test score showing by far the largest gap. Despite these differences in credentials, black and white students have quite similar expectations about their GPA during their first year in college (3.51 for whites and 3.44 for blacks); a t-test cannot reject the null hypothesis of equal means.

15 The survey was not conducted in the third year as many Duke students study abroad during that year.
16 In the Appendix, we examine who attrits and test for nonresponse bias.
17 Asking students about the probabilities associated with different grade outcomes (as opposed to just the mean) would have been particularly advantageous for other purposes. Namely, those individuals who are less certain have more potential to be mismatched as these individuals would benefit the most from more information.
Table 1 shows that there is a significant racial difference in the actual first year cumulative GPAs. The actual GPA for blacks is on average 2.90, in contrast to that for whites (3.33) and for Asians (3.40). In fact, a t-test rejects the null hypothesis of equal means. Notice that, for all races, the students' actual first year GPAs are, on average, lower than their expected GPAs. This suggests that all students have overoptimistic expectations. However, this optimism bias is much stronger for black (0.54) and Latino (0.4) students than for white (0.18) and Asian (0.27) students. Again, a t-test rejects the null hypothesis of equality of means. Note that these overly optimistic beliefs may be consistent with rational beliefs in the population as a whole, including those who chose not to attend Duke. There may be a "winner's curse" whereby individuals who receive the best signals are the ones who choose to enroll. Hence, even if, on average, individuals are receiving signals centered around the correct mean, those who chose to attend will have beliefs that are, on average, above the actual average of first year GPAs.

Of course, part of the actual GPA differences across races are predicted by observable differences across races in their entering credentials. For example, Table 1 shows that Asians and whites have substantially higher (more than 1 standard deviation) SAT scores than Latino and black students. Average family income for black students tends to be lower than for Asians and Latinos, which in turn are lower than for whites. The parents of white students tend to have higher educational attainment than blacks.

The key question is then, "Why do the black and Latino students suffer a worse bias in their expectation about their academic performance at Duke?" Does the Duke Admissions Office's evaluation of their application contain valuable information that would
have been useful in help these students form more realistic expectations? If the black and Latino students were able to form more realistic expectations about their academic performance at Duke, would they have reconsidered their decisions to enroll at Duke? These are the key empirical questions related to the mismatch hypothesis.

5. Baseline regressions

While the CLL data set has the advantage of reporting both information from the students regarding their expected grades and information from Duke regarding the ranking of the applicant, disentangling Duke’s private information from what the student knows is challenging. We begin by running some baseline regressions which may bound the amount of private information by the student and Duke regarding the student’s future performance.

We begin by examining the difference between the student’s expected GPA for their freshman year, ExpGPA, and their actual cumulative GPA for their freshman year, GPA. Specifically we see how forecastable is this difference with variables the student should know the effects of, such as their race and SAT scores. Let Z denote this set of variables. We then add variables the student might only have partial information about such as Duke’s ranking of the student (DUKEEv). The forecast error for student i is then

$$GPA_i - ExpGPA_i = Z_i \alpha_1 + \epsilon_{i1},$$

$$GPA_i - ExpGPA_i = Z_i \alpha_2 + DUKEEv \beta_2 + \epsilon_{i2},$$

where the ϵ’s are the projection errors.

Results from regressions (4) and (5) are reported in Table 2. For ease of interpretation, we adjusted the SAT score such that it has zero mean and a standard deviation of 1. Column 1 of Table 2 shows that students underestimate the relationship between their SAT score and performance. Virtually all groups on average overpredict their performance, with the one exception being white females with SAT scores more than 1 standard deviation above the mean. As expected given the descriptive statistics in Table 1, blacks significantly overestimate their performance relative to the other racial groups. Further, the variance of (GPA-ExpGPA) is 0.27 and is actually higher than the variance of first year GPA, which is 0.22. Clearly, if we assume that the student’s only information about their future performance is captured in their expected GPA, then there is a lot of information that the university possesses and a significant amount of noise in expected GPA. Moreover, the statistically significant coefficient estimates on the adjusted SAT and race variables indicates that the student does not accurately know how these characteristics translate into their future performance. Duke, however, is likely to know more accurately about the relationship between characteristics and performance. Column 2 in Table 2 adds controls for Duke’s evaluation rankings of the students. The R^2 increases from 0.088 to 0.148 when we include Duke’s rankings, again suggesting that Duke has

18We have also experimented with specifications that include high school characteristics (private, public, religious, etc.) in the regressions. Their coefficients are not significant and they neither affect the other coefficient estimates nor significantly increase the R^2 of the regressions.
either private information about the student’s future performance or about how information known to both the student and Duke translates into future performance.

The expected GPA of the student, however, may not reflect the student’s true information set. We now test whether the university has private information under a more restrictive setting. Namely, we assume students know how their SAT scores and other demographics translate into future performance. The information set for both the student and the university then contains this common observed information plus common information that is unobserved by the researcher. Under these assumptions, running the regression

\[\text{GPA}_i = Z_i \alpha_3 + \epsilon_{i3} \]

and calculating the \(R^2 \) then leads to a lower bound on the amount of common information that the student and the university have regarding the student’s future performance as it does not include common unobserved information. Results from this regression are reported in column 1 of Table 3.19 Close to 19 percent of the variation in grades can be explained by these observables. Comparing this result with that in column 1 of Table 2 suggests that students underestimate the relationship between SAT scores and performance by more than 50 percent.

To this baseline regression, we add the student’s expected GPA:

\[\text{GPA}_i = Z_i \alpha_4 + \text{ExpGPA}_i \delta_4 + \epsilon_{i4}. \]

19Adding up to the fourth-order polynomial of the student’s expected GPA, ExpGPA, barely increases the \(R^2 \)’s. Also, adding additional variables such as family income and mother’s education had little effect on the \(R^2 \) but did lead to some attrition. These results are available from the authors on request.
Table 3. Baseline tests of private information.

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>3.309***</td>
<td>2.792***</td>
<td>1.828***</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.187)</td>
<td>(0.325)</td>
</tr>
<tr>
<td>Male</td>
<td>−0.080**</td>
<td>−0.086***</td>
<td>−0.043</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.036)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>Black</td>
<td>−0.191***</td>
<td>−0.182***</td>
<td>−0.158***</td>
</tr>
<tr>
<td></td>
<td>(0.051)</td>
<td>(0.052)</td>
<td>(0.053)</td>
</tr>
<tr>
<td>White</td>
<td>0.047</td>
<td>0.061</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.041)</td>
<td>(0.042)</td>
</tr>
<tr>
<td>Asian</td>
<td>0.037</td>
<td>0.030</td>
<td>−0.010</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.049)</td>
<td>(0.049)</td>
</tr>
<tr>
<td>Adjusted SAT</td>
<td>0.178***</td>
<td>0.167***</td>
<td>0.103***</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.018)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Expected GPA</td>
<td>0.145***</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td>(0.047)</td>
<td></td>
</tr>
<tr>
<td>Controls for Duke eval?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>R^2</td>
<td>0.188</td>
<td>0.196</td>
<td>0.321</td>
</tr>
</tbody>
</table>

The dependent variable is GPA; $N = 938$. Adjusted SAT is the SAT score normalized to have zero mean and a standard deviation of 1. The coefficients on the Duke evaluation rankings are reported in column 2 of Table A.1 in the Appendix. *, **, and *** indicate that the coefficient is significant at 10%, 5%, and 1%, respectively.

The difference in R^2 between (6) and (7) should provide an upper bound on the student’s private information as it includes not only the student’s private information, but also common unobserved information that is correlated with the student’s private information. These results are reported in column 2 of Table 3. The differences in R^2 between column 2 and column 1 in Table 3 indicates that including the expected GPA of the student increases the R^2 by less than 0.01, which provides an upper bound on the importance of students’ private information.

Finally, we add Duke’s evaluation rankings of the students:

$$\text{GPA}_i = Z_i \alpha_5 + \text{ExpGPA}_i \delta_5 + \text{DukeEv}_i \beta_5 + \epsilon_i.$$ \hspace{1cm} (8)

The difference in R^2 between (7) and (8) should provide a lower bound on the importance of Duke’s private information. Notice from column 3 that controlling for Duke’s rankings increases the R^2 by more than 0.12, again suggesting substantial Duke private information. Note that this still leaves two-thirds of the variation in GPA unexplained, perhaps due to course selection and shocks to how students respond to college life.

A drawback of this empirical strategy is that we do not fully observe common information; as a consequence, there is no guarantee that the reported bounds are, in fact, the real ones. Further, measurement error in the expected GPA variable may be contaminating the results. In the following section, we implement a different strategy that...
overcomes these limitations; it allows us to identify private and common information so as to perform a more accurate variance decomposition analysis. However, it is worth mentioning that both strategies provide surprisingly similar results.

6. Nonparametric identification of private information

There is a large existing economics literature that tests for asymmetric information particularly for adverse selection in the empirical analysis of a variety of insurance markets.21 Most of these papers test whether the data support a positive association between insurance coverage and ex post risk occurrence, a robust prediction of the classical models of insurance markets developed by Arrow (1963), Pauly (1974), Rothschild and Stiglitz (1976), and Wilson (1977).22

Our setting substantially differs from the insurance market setting studied in the existing literature. The empirical insurance literature assumes that private information is possessed by one side of the market—the potentially insured—and it is manifested through their insurance purchase and their ex post risk occurrence. In our setting, there is presumably private information about the treatment effect by both the student and the university. Moreover, the empirical insurance literature typically assumes either to have access to observations for individuals with and without insurance and their risk realizations, or to have access to observations for individuals with different amounts of coverage and their risk realizations. In our setting, if a student does not attend the elite university, we will not observe the student’s outcome had he attended it, or if the student attends the elite university, we will not observe the student’s outcome had he not attended. For these reasons, we describe below a new empirical strategy to identify private information in our setting.

6.1 Available data and assumptions

As we mention in Section 3, we have data about an observed student outcome \(Y \) (i.e., first year cumulative GPA, denoted by GPA). Conceptually, we assume that \(Y \) is a linear function of \(X_U, X_S, \) and \(X_C \), where \(X_U \) denotes the unobserved university’s private information about student performance, \(X_S \) denotes the unobserved student’s private information, and \(X_C \) denotes the information that is common to both students and the university but unobserved by the researcher. Of course, we can also include a set of variables \(Z \) that are common information to the university and the students, and are observed by researchers, such as observed family and high school characteristics. For simplicity, we ignore \(Z \) in the discussion below.

Specifically, suppose that

\[
Y = X_C \gamma_C + X_U \gamma_U + X_S \gamma_S + \epsilon, \tag{9}
\]

22See Chiappori, Jullien, Salanié and Salanié (2006) for a general derivation of the positive association property.
where ε is noise. By construction, and thus without loss of generality, we assume that $X_C, X_U, X_S,$ and ε are independent.

Suppose that we also have access to two additional variables: a variable, denoted by W_U, that measures the selective university’s assessment about the student’s treatment effect given its private knowledge about the match between the student and the university X_U, as well as the common information X_C; another variable denoted by W_C that measures the student’s own performance expectation in the selective university given the common information X_C and her own private information X_S. We assume that (W_U, W_S) are related to $X_C, X_U,$ and X_S as

$$W_U = X_C + X_U,$$

$$W_S = X_C + X_S.$$

To summarize, suppose that we observe a data set \{\(W_U, W_S, Y\)\} and assume that there exist independent variables $X_C, X_U, X_S,$ and ε such that \{\(W_U, W_S, Y\)\} are generated by (9)–(11). The question we are interested in is how do we estimate the coefficients γ_C, γ_U, and γ_S, and/or decompose the importance of common information X_C, student private information X_S, university private information X_U, and noise ε in explaining the variation of Y in the data?

The key to answering this question is that, even though $X_C, X_S,$ and X_U are unobserved, it is possible to recover their marginal distributions from the observed joint distribution of (W_U, W_S). This result is from Kotlarski (1967).

Theorem 1—Kotlarski’s Theorem. Let $X_C, X_U, and X_S$ be three independent real-valued random variables. Suppose W_U and W_S are generated as in (10) and (11). Then the joint distribution of (W_U, W_S) determines the marginal distribution of $X_C, X_U,$ and X_S up to a change of location as long as the characteristic function of (W_U, W_S) does not vanish (i.e., it does not turn into zero on any nonempty interval of the real line).

The intuition for Kotlarski’s theorem can be heuristically conveyed from thinking about how all the moments of the three variables $X_C, X_U,$ and X_S can be recovered from the joint distribution of (W_U, W_S) under the assumption that $X_C, X_U,$ and X_S are independent. For example, the covariance of W_U and W_S tells us about the second moment of X_C. The covariance of W_U^2 and W_S tells us about the third moment of X_C, and so on.

The proof of the theorem also shows how the marginal distributions for $X_C, X_S,$ and X_U can be constructed. Once we have the marginal distributions of $X_C, X_S,$ and X_U, we can generate data where the ith observation is a triple \{\(X_{Ci}, X_{Si}, X_{Ui}\)\}. Equations (10) and (11) can then be used to obtain \{\(W_{Ui}, W_{Si}\)\}.

23We will describe in Section 6.2 the empirical counterparts of W_U and W_S in our setting.

24The proof can also be found in Rao (1992, pp. 7–8). Kotlarski’s theorem has been widely used in measurement error models in econometrics (e.g., Li and Vuong (1998)). It has been applied elsewhere in economics, for example, Cunha, Heckman and Navarro (2005) used it to distinguish uncertainty from heterogeneity in their analysis of life-cycle earnings, and Krasnokutskaya (2011) used it in the context of identifying and estimating auction models with unobserved auction heterogeneity.
If we then could generate data on Y, we could use (9) to estimate γ_C, γ_U, and γ_S, as well as assess their importance in determining Y by performing a variance decomposition. Given the observed joint distribution of $\{Y, W_U, W_S\}$, we can use multiple imputation to generate Y_i. Details on how to recover the marginal distributions of X_C, X_S, and X_U as well as how the multiple imputation was conducted can be found in a supplementary file on the journal website, http://qeconomics.org/supp/83/supplement.pdf.

Remarks. We have assumed in equation (9) that the student outcome Y is a linear function of X_C, X_U, and X_S. This is for simplicity only. With the pseudo data sets we simulated in Step 3 in the supplement, we can also estimate Y as a nonlinear function of these variables or even nonparametrically estimate their relations.

It is also worth noting in specifications (10) and (11), that we interpret X_U and X_S as, respectively, the true private information for the university and the student, and assume away noise in the measurement of the variables W_U and W_S. If instead the variables we extract in Step 1 contain the true private information of the university and students contaminated by noise, then we will have, in Step 4, a mismeasured independent variable in the regressions. This may bias our coefficient estimates for γ_U and γ_S downward, but when we do variance decomposition for Y, we should still be able to recover the importance of the true private information of the university and the student in explaining the variance of the outcome variable Y.

6.2 Data and results

As we already mentioned, it is necessary to have access to (at least) two variables $\{W_U, W_S\}$ to apply Kotlarski’s decomposition. Here we provide the details of these variables in our empirical application.

W_U is specified as Duke’s predicted first year GPA for the student, which we denote by GPA$_U$. Specifically, GPA$_U$ is predicted student GPA from the estimated regression

$$GPA_i = Z_i \alpha_6 + \text{DukeEv}_i \beta_6 + \epsilon_{i6},$$

where GPA$_i$ denotes the actual first year GPA. Recall that Z_i are the observed SAT scores and demographics, and that DukeEv refers to the Duke ranking variables.

For W_S, we consider two alternative specifications. The first specification for W_S is the student’s predicted GPA, which we denote by GPA$_S$, predicted from the estimated regression equation (7) from the previous section:

$$GPA_i = Z_i \alpha_4 + \text{ExpGPA}_i \delta_4 + \epsilon_{i4}.$$

This specification implies that students have an accurate idea about how to weigh each informational variable (e.g., SAT) when they predict their performance. The second specification for W_S is the expected GPA (ExpGPA) reported in the CLL survey by the student before coming to Duke. To the extent that the students may not properly weigh the effect of the observable variables on their actual GPA, as documented in Table 2, we attribute some of the students’ wrong weighting on the importance of common information X_C to Duke private information.
Table 4. Regressing GPA on duke private information, student private information, and common information.\(^a\)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
<td>Std. Err.</td>
</tr>
<tr>
<td>Duke priv. inf. ((X_U))</td>
<td>1.070***</td>
<td>0.037</td>
</tr>
<tr>
<td>Student priv. inf. ((X_S))</td>
<td>0.066*</td>
<td>0.040</td>
</tr>
<tr>
<td>Common inf. ((X_C))</td>
<td>0.993***</td>
<td>0.018</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Note that *, **, and *** indicate that the coefficient is significant at 10%, 5%, and 1%, respectively.

Following the discussion in the previous section, we generated data on \(Y_i\) and the triple \(\{X_Ci, X_Ui, X_Si\}\). Table 4 reports the variance decomposition of GPA following two different specifications for \(W_S\) as described above. The specification in column 1 assumes that students know how to weight the available information when they predict their performance; results show that Duke’s private information explains 9.1 percent of the variance in the students’ actual first year cumulative GPA; the student’s private information explains no more than 0.1 percent and the common information explains 26.5 percent. The specification in column 2 allows that students may not know how to weigh the information; as a consequence, the fraction of the variance in GPA explained by Duke private information increases to 23.5 percent and that explained by common information declines to 8.1 percent, but the fraction explained by student private information remains about 0.1 percent.

It is worth noting how the \(R^2\) changes depending on the specification. First the total \(R^2\) in column 2 is smaller than in column 1, possibly due to the loss of valuable information when students do not correctly weigh the available information or to students reporting expected GPA with error. Second, there is an important change, similar in magnitudes but in opposite directions, of the proportion of the variance that could be explained by common information and Duke private information. This seems to suggest that the size of Duke’s private information not only depends on what information is not available to the students, but also how the students at Duke weigh the information available to them in forecasting their performance at Duke.

6.3 Measurement error in student expectations

Assuming that students are rational implies that the coefficient on students’ private information should be equal to 1; however, as we can see from Table 4, this is not the case. One possible explanation for this discrepancy is that students may erroneously report their expected GPA. The attenuation bias from the measurement error might drive the small \(R^2\) we found for the students’ private information reported in Table 4. However, if we assume that the discrepancy between estimated \(\hat{\gamma}_S\) and the postulated value \(\gamma_S = 1\) under rational expectations is due completely to measurement error, we can easily provide an upper bound on the variance of the student private information without measurement error.
In particular, note that the Kotlarski result allows us to separate student expected GPA and university expected GPA into three orthogonal components. Imbedded in X_u is then both the student’s private information and their measurement error. Denote X^*_S as the students’ true private information and ϵ_u as measurement error. Equation (9) then uses X^*_S rather than X_S:

$$Y = X_C\gamma_C + X_U\gamma_U + X^*_S\gamma_S + \epsilon,$$

Assuming that ϵ_u is orthogonal to the common, university, and student information, and is classical measurement error, we have

$$\hat{\gamma}_S = \frac{\text{Var}(X^*_S)}{\text{Var}(X_S)},$$

where $\text{Var}(X^*_S)$ is the variance of student private information when it is purged of measurement error and $\text{Var}(X_S)$ is the variance of X^*_S measured with error. Given that we know $\hat{\gamma}_S$, γ_S (which is equal to 1 under the rational expectation assumption) and $\text{Var}(X_S)$, then we can recover $\text{Var}(X^*_S)$, which will allow us to obtain an upper bound on the R^2 for student private information.

Once we correct for measurement error, the upper bounds of the R^2 for student private information under the specifications in column 1 and 2 are, respectively, equal to 0.0068 and 0.0013; again, they are substantially smaller in magnitude than the private information possessed by Duke. The results obtained in this section are then quite similar to those obtained from the baseline regressions. Thus, the conclusion that Duke does possess private information that can predict the students’ post-enrollment performance is robust to different empirical strategies including those that account for measurement error.

7. Information sets and student outcomes

We have shown that Duke private information can help students to obtain more accurate expectations about their future performance. However, academic performance is an intermediate outcome and might not be the treatment that guides individual decision-making. Therefore, this section will present evidence that links measures of Duke private information with more “treatment related” outcomes.

We focus on two sets of outcomes. First, we consider changes in beliefs or decisions as a result of the new information, providing corroborating evidence of Duke’s private information. Second, we consider the students’ overall satisfaction with their Duke experience, including using information on whether students as seniors, knowing what they know now, would have made the decision to attend Duke. For both sets of outcomes, we show clear evidence that the new information conveyed in the individual’s first year performance is a significant predictor of future outcomes.

7.1 Changes in beliefs and choices

To examine how new information changes beliefs and choices, we again partition information into what the student knows and what the university knows. Unfortunately, as
our measures are discrete, the Kotlarski decomposition is not as useful here.\(^{25}\) Recall that in Section 6, freshman GPA was partitioned into three parts: student information, Duke information, and common information. Here the partitioning occurs only on student information and Duke information, with Duke information constructed to be orthogonal to student information.

We work with two different assumptions on what is the students’ information set. We begin by assuming that the students know much more than what they report in their expected grade point average. Namely, as in equation (7), we regress actual grade point average on information that is available to the students plus their expected grade point average:

\[
GPA_i = Z_i \alpha_4 + \text{ExpGPA}_i \delta_4 + \epsilon_{i4}.
\]

The predicted values from this regression are used as the information set of the student. We then regress the residuals from (13) on Duke information, with the remaining error attributed to noise. Note that our measure of Duke information is then, by construction, orthogonal to our measure of student information and to the shock.

Our second measure of the students’ information set is to regress actual grade point average solely on expected grade point average. We then create Duke’s private information by regressing the residual on Duke’s information, with the error from this second stage regression again attributed to noise. The second measure recognizes the fact that students may not know how to weigh certain information (e.g., SAT, gender, and race) which should have already been taken into account when they reported their expected GPA. The remaining variation is considered to be the shock: information available neither to the student or to Duke.

We first relate these information sets to self-reported measures of whether the students exceeded or underperformed relative to their expectations. In particular, the CLL senior year data contain responses to the following question:

Which statement best describes how your academic achievement so far compares to your expectations for yourself when you arrived at Duke? 1. I am doing much better than expected; 2. I am doing a little better than expected; 3. I am doing as well as I expected; 4. I am doing a little worse than I expected; 5. I am doing much worse than I expected.

Table 5 presents ordered Probit results from regressing student response to the question above on the two sets of information variables. The left panel shows results when students are assumed to know the effects of observed variables like their SAT scores. The estimated coefficients of all three measures of information—that of the student, Duke, and the shock—are all positive and significant, implying that higher values for these variables make it more likely that students report that they exceeded their expectations. If the students had the information in these variables ahead of time, then they should have had no effect on the outcome of whether the students performed better or worse.

\(^{25}\) Experimentation using this method for these discrete outcomes showed that the results were very sensitive to the tuning parameters. The disadvantage of not using the Kotlarski decomposition is that we no longer can deal explicitly with measurement error. However, given how little measurement error affected the results in the previous section, we feel comfortable ignoring it here.
than expected. That the coefficient on student information is positive and significant suggests that students were surprised about how their observed characteristics translated into their academic achievement.

Column 2 reports the results when we take the students’ expected grade point average as their information. The estimated coefficient on student information changes from positive to negative, but is not statistically significant. A negative sign is indicative of students having bad information and then realizing the information is bad when responding to whether they performed better or worse than they expected. The coefficient on Duke information is once again positive and significant, providing corroborating evidence that Duke has information about the students that may be useful for Duke students decision-making.

We next see if Duke has information that can predict changes in subjective measures of student happiness. The CLL survey asked students during the year before coming to Duke and at the end of the spring semester of their freshmen year to indicate the level of agreement with the following statement: “On the whole, I am satisfied with myself.” The possible answers are five categories that go from strongly disagree to strongly agree. We difference the two measures to get a measure of change in student satisfaction.

| Table 5. Ordered probit estimates of performance relative to expectations. a |
|---|---|---|---|
| Information Set Specification I | Information Set Specification II |
| Shock | 1.929*** | 0.128 | 1.928*** | 0.133 |
| Student information | 0.725*** | 0.153 | −0.481 | 0.453 |
| Duke information | 1.479*** | 0.364 | 1.192*** | 0.187 |
| R^2 | 0.1394 | 0.1436 |

aThe dependent variable is the students’ subjective satisfaction measured in their senior year; it takes one of five values, with higher values associated with performance exceeding expectations (see text for details). $N = 748$. *, **, and *** indicate that the coefficient is significant at 10%, 5%, and 1%, respectively. Information set I assumes individuals weight their observed characteristics appropriately when forming their expected GPAs. Information set II allows students to use wrong weights when forming their expectations. See text for details.

| Table 6. Change in student satisfaction and information. a |
|---|---|---|---|
| Information Set Specification I | Information Set Specification II |
| Shock | 0.376*** | 0.114 | 0.369*** | 0.118 |
| Student information | 0.114 | 0.171 | −0.874* | 0.510 |
| Duke information | 0.400 | 0.307 | 0.350** | 0.146 |
| R^2 | 0.0081 | 0.0104 |

aOrdered Probit estimates. See the text for details of the construction of the variables. $N = 751$. *, **, and *** indicate that the coefficient is significant at 10%, 5%, and 1%, respectively. Standard errors were bootstrapped. Information set I assumes individuals weight their observed characteristics appropriately when forming their expected GPAs. Information set II allows students to use wrong weights when forming their expectations. See text for details.
Ordered Probit estimates are reported in Table 6. These results mirror those in Table 5. Both positive shocks to grades and Duke information have positive effects on changes in student happiness. Further, the coefficient on student information moves from positive to negative as the information on the true relationship between grades and student characteristics is removed from the students’ information set.

Finally, we examine how information affects choice of major. Accurate predictions about persistence in certain majors constitute highly valuable information given that majoring in the humanities instead of the natural sciences may lead to significantly lower earnings. For instance, James, Alsalam, Conaty, and To (1989) argued that “...while sending your child to Harvard appears to be a good investment, sending him to your local state university to major in engineering, to take a lots of math, and preferably to attain a high GPA, is an even better private investment.” Both Loury and Garman (1995) and Arcidiacono (2004) documented large differences in earnings across majors. We split majors into two categories: natural sciences/engineering and humanities/social sciences. Table 7 shows patterns of switching majors across races, taking the initial major from the pre-college survey. Conditional on the initial major being in the natural sciences category, more black students actually switch their major than stay in the natural sciences. This is in contrast to whites, where those who initially chose one of the natural sciences were two and a half time more likely to stay in the natural sciences than to switch.

Very few students decided to start majoring in humanities/social sciences, but later change into the natural sciences, which may indicate that information is more important to success in these fields. Majors in the natural sciences or engineering are, in general, characterized by a more rigorous curriculum (Babcock and Marks (2011)) and grading policy (Babcock (2010), Johnson (2003)). A direct consequence of these differences is considerable variation in the distribution of grades across departments. For instance, the CLL data show that the median grade in chemistry courses at Duke University is a B, while in English it is an A−. Grading disparities together with overoptimistic expectations about schooling performance constitute a possible explanation for the intensive emigration patterns that are observed from hard science majors each year.

Table 7. Patterns of major choice by race.\(^a\)

<table>
<thead>
<tr>
<th>Initial Major</th>
<th>Final Major</th>
<th>White (%)</th>
<th>Black (%)</th>
<th>Asian (%)</th>
<th>Latino (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural sci</td>
<td>Natural sci</td>
<td>25.4</td>
<td>15.7</td>
<td>41.2</td>
<td>18.4</td>
</tr>
<tr>
<td>Natural sci</td>
<td>Humanities/soc sci</td>
<td>10</td>
<td>22.2</td>
<td>9.1</td>
<td>15.1</td>
</tr>
<tr>
<td>Humanities/soc sci</td>
<td>Humanities/soc sci</td>
<td>30.6</td>
<td>41.6</td>
<td>20.9</td>
<td>36.3</td>
</tr>
<tr>
<td>Humanities/soc sci</td>
<td>Natural sci</td>
<td>0.9</td>
<td>0.5</td>
<td>2.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Don't know</td>
<td>Natural sci</td>
<td>6.8</td>
<td>4.3</td>
<td>11.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Don't know</td>
<td>Humanities/soc sci</td>
<td>26.3</td>
<td>15.7</td>
<td>14.4</td>
<td>28.8</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td>468</td>
<td>185</td>
<td>187</td>
<td>179</td>
</tr>
</tbody>
</table>

\(^a\)See the Appendix for how majors were partitioned.
Table 8. Estimates of the probability of persisting in the natural sciences.a

<table>
<thead>
<tr>
<th>Information Set Specification I</th>
<th>Information Set Specification II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock</td>
<td>0.471***</td>
</tr>
<tr>
<td>Student information</td>
<td>1.467***</td>
</tr>
<tr>
<td>Duke information</td>
<td>1.931***</td>
</tr>
<tr>
<td>Constant</td>
<td>−4.310***</td>
</tr>
<tr>
<td>R^2</td>
<td></td>
</tr>
</tbody>
</table>

aN = 279. Estimated on only those whose initial major was in the natural sciences or engineering. *, **, and *** indicate that the coefficient is significant at 10%, 5%, and 1%, respectively. Standard errors were bootstrapped. Information set I assumes individuals weight their observed characteristics appropriately when forming their expected GPAs. Information set II allows students to use wrong weights when forming their expectations. See text for details.

We then examine how information affects whether the individual persists in the natural sciences. Table 8 presents Probit regressions in which the dependent variable is a dummy that takes value 0 if a student reports as expected major in natural sciences or engineering but later change into humanities or social sciences, and takes value 1 if the student remains in the natural sciences. The patterns in Tables 6 and 7 are again repeated here. The estimated coefficient student information again changes sign when the true relationship between grades and student characteristics is removed from the student’s information set. The results show that higher values of Duke information make persistence more likely. Using the results from information set specification II, a 1 standard deviation increase in Duke information increases the probability of persisting in a natural sciences major by around 8%.

In sum, Duke’s private information on student performance is important beyond the student’s grade point average, affecting both the student’s subjective well-being as well as the likelihood of persisting in a difficult major. It is important to note, however, that we have still only established that some of the necessary conditions for mismatch are met. For mismatch to exist, information must not only be important but the revelation of the information must change the institution the individual would have chosen to attend. Hence, even if individuals find out they are not as academically strong as they thought, the information still may not have changed their decisions.

7.2 Information and satisfaction

The previous section showed that new information affected students’ beliefs and choice of major. Here we see if the new information provided in freshmen grades has an impact on how the students value the Duke experience as seniors. In particular, the senior survey asked how satisfied the students were with their Duke experience and also with their choice of major. Of course the new information, if it was bad, could lead to less satisfaction regardless of whether the individual attended Duke. But one final question was asked that gets at this issue. Namely, students were asked whether, given the information they have now, they would have made the same decision to attend Duke. To the extent that the new information affects answers to this question, we have a direct measure of mismatch. The three survey items we use are the following:
1. On a scale of 0 to 10, your overall satisfaction with your Duke experience.

2. On a scale of 0 to 10, your overall satisfaction with your major.

3. Knowing what you know now, all things considered, would you come to Duke if you were doing it all over again?

Since these measures do not correspond to changes in behavior or beliefs, we use additional controls such as sex, race, and initial major. In addition, power is an issue here; so rather than separating freshmen grades into three sources, we focus on the difference between the students’ expected freshman GPA from their actual freshmen GPA. This is equivalent to constraining the coefficient on Duke information to be equal to the coefficient on the shock in the previous subsections. Finally, we also control for expected GPA directly to take into account that those who have higher expected GPAs may be more optimistic in general.

Results are presented in Table 9. Each cell corresponds to a separate regression, with the rows giving the three dependent variables. The results indicate that the shock to students’ GPA does influence their satisfaction with both their school and their major: positive information is associated with higher levels of satisfaction. Even more importantly in terms of testing for mismatch, negative information is associated with regret about attending Duke.

8. Discussion and conclusion

We have argued that once we take into account the students’ rational enrollment decisions, mismatch in the sense that the intended beneficiary of affirmative action admission policies are made worse off could occur only if selective universities possess private information about students’ post-enrollment treatment effects. This necessary condition for mismatch provides the basis for a new test. We propose an empirical methodology to test for private information in such a setting. The test is implemented using data from the CLL Project at Duke. The evidence shows that Duke does possess private
information that is a statistically significant predictor of the students’ post-enrollment academic performance.

However, even though we have shown substantial evidence that Duke does indeed possess private information about the student’s future performance, we cannot conclude that there is mismatch. We now propose three potential avenues that may lead to a more conclusive test of mismatch. All three proposed avenues are suggested by our simple theoretical framework in Section 3; namely, mismatch occurs only if release of the private information about the student’s treatment effect leads to a different enrollment decision.

The first potential avenue exploits a particular group of admitted students who are actually aware of their rankings by the admission officers, namely those who are admitted off the waiting list. Suppose that researchers have access to the complete admission list, including those admitted off the wait list, as well as their subsequent matriculation decisions. Then to the extent that the students admitted off the wait list and those admitted in the initial round but close to the initial-round admission margin in the admission officers’ rankings are similar, we can compare their enrollment rates to infer the presence of mismatch. If the enrollment rate for those admitted off the wait list is less than that of similar students admitted in the initial round, then it is likely that the knowledge of the admission officers’ rankings for those admitted off the wait list leads to a change in the students’ enrollment decision, which is evidence for mismatch.

The second potential avenue requires the cooperation of the Office of Admissions at a selective university. After the admission decisions are made, the Office of Admissions could randomly assign admitted minority students into two groups: the first group will receive the standard admission letter and the second group will receive the standard admission letter together with information about average freshmen performance as well as the student’s expected performance given the experience of past cohorts. Then observing that the enrollment rate for the second group is smaller than the first group will prove that the university’s private information may have generated mismatch.

The third potential avenue to test for mismatch is to ask the admitted students two questions:

Q1. What do you realistically expect will be your cumulative GPA at Duke after your first year?

Q2. Suppose your expected GPA at Duke was X. Would you still have chosen Duke?

Where X is filled in by the researcher as the student’s predicted cumulative GPA based on the private information of the Office of Admissions. If a significant fraction of students respond “No” to Q2, then there is mismatch.\(^{27}\)

However, it is important to note that even if one cannot conclusively prove the existence of mismatch, evidence that a selective university possesses valuable ex ante information could be used in preventing mismatch. To the extent that a university with active affirmative action programs is concerned about potential mismatch, it suggests that releasing more information to their applicants about how the admission officers

\(^{27}\)Note that in both cases we would be testing for local mismatch rather than global mismatch.
feel about their fit with the university will minimize possibilities for actual mismatch. More transparency and more effective communication with the students, and possibly pre-enrollment sit-ins in college classrooms, and so forth, can help minority students who enroll in an elite university find out that they might have potentially been better off elsewhere.

Appendix A

In this appendix, we examine the CLL data for dropout bias and nonresponse bias. We also report the coefficients for the Duke ranking measures from Tables 2 and 3 as well as how majors were partitioned.

A.1 Dropout bias and nonresponse bias

The Registrar’s Office data provided information on students who were not enrolled at the end of the semester in each survey year. Nonenrollment might occur for multiple reasons including academic or disciplinary probation, medical or personal leave of absence, dismissal, or voluntary (including a small number of transfers) or involuntary withdrawal. Fewer than 1 percent of students \((n = 12)\) were not enrolled at the end of the first year, about 3 percent by the end of the second year \((n = 48)\), and just over 5 percent \((n = 81)\) by the end of the senior year. We combined all of these reasons and tested for differences in selected admissions file information of those enrolled versus not enrolled at the end of each survey year. The test variables included racial ethnic group, SAT verbal and mathematics score, high school rank (where available), overall admission rating (a composite of five different measures), parental education, financial aid applicant, public–private, nonreligious-private, or religious high school, and U.S. citizenship. Of over 40 statistical tests, only two produced significant differences (with \(p\)-value less than 0.05): (i) At the end of the first year, dropouts had SAT verbal scores of 734 versus 680 for non-dropouts; (ii) by the end of the fourth year, those who had left college had an overall admissions rating of 46.0 (on a 0–60 scale) while those in college had an average rating of 49.7. No other differences were significant. We conclude that our data contain very little dropout bias.

We conducted similar tests for respondents versus nonrespondents for each wave for the same variable set plus college major (in four categories: engineering, natural science/mathematics, social science, humanities), whether or not the student was a legacy admission, and GPA in the semester previous to the survey semester. Seven variables show no significant differences or only a few small sporadic differences (one wave but not others), including racial ethnic category, high school rank, admissions rating, legacy, citizenship, financial aid applicant, and major group. However, several other variables show more systematic differences:

- Nonrespondents at every wave have lower SAT scores (math: 9–15 points lower, roughly 1/10 to 1/5 of a standard deviation; verbal: 18–22 points lower, roughly 1/3 of a standard deviation).

\(^{28}\)Releasing this information reveals not only information about the student’s unobserved ability, but also how the student’s observed characteristics translate into success in a college environment.
Quantitative Economics 2 (2011) Does affirmative action lead to mismatch 329

- Nonrespondents have slightly better educated parents at waves one and three, but not waves two and four.
- Nonrespondents at every wave are less likely to be from a public high school and somewhat more likely to be from a private (nonreligious) high school.
- Nonrespondents have somewhat lower GPA in the previous semester compared with respondents (by about one-quarter of a letter grade).

These differences are somewhat inconsistent in that they include lower SAT and GPA for nonrespondents, but higher parental education and private (more expensive) high schools. In general, the nonresponse bias is largest in the pre-college wave and smaller in the in-college waves even though the largest response rates are in the pre-college wave. In general, we judge the nonresponse bias as relatively minor on most variables and perhaps modest on SAT measures.

A.2 Omitted coefficients for Duke evaluation rankings in Tables 2 and 3

Here we report coefficients for the Duke ranking variables that were omitted from Tables 2 and 3. Column 1 shows the coefficients when the dependent variable is GPA-ExpGPA, the omitted coefficients from column 2 in Table 2. Column 2 shows the coefficients when the dependent variable is GPA, the omitted coefficients from column 3 in Table 3. The Admissions Officers’ ranking of the students’ achievement and personal qualities are very significant in both regressions, suggesting that they may be the key variable for Duke’s private information. Recommendations, however, are only significant in column 2, suggesting that student’s may have some idea of the informational content of their recommendation letters.

A.3 Partitioning of majors

Majors were partitioned according to Table A.2.

References

Table A.1. Coefficients on Duke evaluation rankings.a

<table>
<thead>
<tr>
<th></th>
<th>1 (GPA-ExpGPA)</th>
<th>2 GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achievement_3</td>
<td>0.217</td>
<td>0.227**</td>
</tr>
<tr>
<td></td>
<td>(0.137)</td>
<td>(0.103)</td>
</tr>
<tr>
<td>Achievement_4</td>
<td>0.256*</td>
<td>0.305***</td>
</tr>
<tr>
<td></td>
<td>(0.138)</td>
<td>(0.105)</td>
</tr>
<tr>
<td>Achievement_5</td>
<td>0.448***</td>
<td>0.520***</td>
</tr>
<tr>
<td></td>
<td>(0.135)</td>
<td>(0.102)</td>
</tr>
<tr>
<td>Curriculum_3</td>
<td>0.307</td>
<td>0.301</td>
</tr>
<tr>
<td></td>
<td>(0.275)</td>
<td>(0.224)</td>
</tr>
<tr>
<td>Curriculum_4</td>
<td>0.246</td>
<td>0.400*</td>
</tr>
<tr>
<td></td>
<td>(0.258)</td>
<td>(0.212)</td>
</tr>
<tr>
<td>Curriculum_5</td>
<td>0.273</td>
<td>0.452**</td>
</tr>
<tr>
<td></td>
<td>(0.259)</td>
<td>(0.213)</td>
</tr>
<tr>
<td>Essay_3</td>
<td>−0.086</td>
<td>−0.104</td>
</tr>
<tr>
<td></td>
<td>(0.105)</td>
<td>(0.103)</td>
</tr>
<tr>
<td>Essay_4</td>
<td>−0.026</td>
<td>−0.038</td>
</tr>
<tr>
<td></td>
<td>(0.107)</td>
<td>(0.104)</td>
</tr>
<tr>
<td>Essay_5</td>
<td>−0.124</td>
<td>−0.196</td>
</tr>
<tr>
<td></td>
<td>(0.137)</td>
<td>(0.129)</td>
</tr>
<tr>
<td>Personal Qualities_3</td>
<td>0.053</td>
<td>0.116</td>
</tr>
<tr>
<td></td>
<td>(0.198)</td>
<td>(0.168)</td>
</tr>
<tr>
<td>Personal Qualities_4</td>
<td>0.047</td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td>(0.198)</td>
<td>(0.168)</td>
</tr>
<tr>
<td>Personal Qualities_5</td>
<td>0.213</td>
<td>0.305</td>
</tr>
<tr>
<td></td>
<td>(0.209)</td>
<td>(0.175)</td>
</tr>
<tr>
<td>Recommendations_3</td>
<td>0.010</td>
<td>0.393**</td>
</tr>
<tr>
<td></td>
<td>(0.210)</td>
<td>(0.168)</td>
</tr>
<tr>
<td>Recommendations_4</td>
<td>0.026</td>
<td>0.423**</td>
</tr>
<tr>
<td></td>
<td>(0.217)</td>
<td>(0.173)</td>
</tr>
<tr>
<td>Recommendations_5</td>
<td>0.014</td>
<td>0.427**</td>
</tr>
<tr>
<td></td>
<td>(0.221)</td>
<td>(0.176)</td>
</tr>
</tbody>
</table>

aThe base category for each evaluation measure is 2; none of the samples had 1’s for any of these measures. Column 1 refers to the omitted coefficients in Table 2 (column 2); column 2 refers to the omitted coefficients in Table 3 (column 3). *, **, and *** indicate that the coefficient is significant at 10%, 5%, and 1%, respectively.

Table A.2. Assignment of majors.

<table>
<thead>
<tr>
<th>Humanities/Social Sciences</th>
<th>Natural Sciences/Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>African/African American Studies</td>
<td>Biological Anthropology & Anatomy</td>
</tr>
<tr>
<td>Art History</td>
<td>Biology</td>
</tr>
<tr>
<td>Asian & African Language/Literature</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>Classical Civilization</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Cultural Anthropology</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Economics</td>
<td>Computer Science</td>
</tr>
<tr>
<td>English</td>
<td>Earth & Ocean Sciences</td>
</tr>
<tr>
<td>German</td>
<td>Computer Engineering</td>
</tr>
<tr>
<td>History</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>International Comparative Studies</td>
<td>Environmental Sciences</td>
</tr>
<tr>
<td>Interdepartmental Literature/History</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Italian & European Studies</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Linguistics</td>
<td>Physics</td>
</tr>
<tr>
<td>Literature</td>
<td></td>
</tr>
<tr>
<td>Medieval & Renaissance Studies</td>
<td></td>
</tr>
<tr>
<td>Music</td>
<td></td>
</tr>
<tr>
<td>Philosophy</td>
<td></td>
</tr>
<tr>
<td>Political Science</td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td></td>
</tr>
<tr>
<td>Public Policy Studies</td>
<td></td>
</tr>
<tr>
<td>Religion</td>
<td></td>
</tr>
<tr>
<td>Sociology</td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td></td>
</tr>
<tr>
<td>Theater Studies</td>
<td></td>
</tr>
<tr>
<td>Women's Studies</td>
<td></td>
</tr>
</tbody>
</table>

