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Appendix B

Proof of Lemma A.1. The proof uses similar arguments as in Dunsmuir (1979), but
allowing for weak identification and selecting a subset of frequencies using W (ω). It
consists of two steps. Step 1 proves asymptotic normality and Step 2 verifies that the
limiting covariance matrix is an identity matrix.

Step 1. First consider ξ1T . Rewrite it as

ξ1T = 1

2
√
T

T−1∑
j=1

φT (ωj)
∗ vec

(
IT (ωj)−EIT (ωj)

)
(B.1)

+ 1

2
√
T

T−1∑
j=1

φT (ωj)
∗ vec

(
EIT (ωj)− fθ0(ωj)

)
� (B.2)

The term (B.2) is asymptotically negligible. Specifically, EIT (ω) can be expressed as

EIT (ω)=
T−1∑

s=−T+1

(
1 − |s|

T

)
Γ (s)exp(−isω)

with

Γ (s)= 1
2π

∫ π

−π
fθ0(ω)exp(isω)dω�

Using the property of the Cesaro sum and that fθ0(ω) belongs to the Lipschitz class of
degree β with respect to ω, we have (Hannan (1970, p. 513))

sup
ω∈[−π
π]

∥∥vec
(
EIT (ω)− fθ0(ω)

)∥∥ =O(
T−β)

�
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The term (B.2) is, therefore, bounded by

1
2
T 1/2 sup

ω∈[−π
π]

∥∥φT (ω)∥∥ sup
ω∈[−π
π]

∥∥vec
(
EIT (ω)− fθ0(ω)

)∥∥ = O
(
T−β+1/2)

= o(1)


where the first equality is becauseφT (ω) is finite by Assumption W and the last equality
follows because β > 1/2. Thus, to derive the limiting distribution of ξ1T , it suffices to
consider (B.1) only.

Let φTM(ω) denote the (M − 1)th order Cesaro sum of the Fourier series for φT (ω):

φTM(ω)=
M−1∑

s=−M+1

(
1 − |s|

M

)
ηT (s)exp(−isω)

with

ηT (s)= 1
2π

∫ π

−π
φT (ω)exp(isω)dω�

Then

(B.1) = 1

2
√
T

T−1∑
j=1

φTM(ωj)
∗ vec

(
IT (ωj)−EIT (ωj)

)
(B.3)

+ 1

2
√
T

T−1∑
j=1

(
φT (ωj)−φTM(ωj)

)∗
vec

(
IT (ωj)−EIT (ωj)

)
�

The second term will be asymptotically negligible if, because of conjugacy,

1

2
√
T

[T/2]∑
j=1

(
φT (ωj)−φTM(ωj)

)∗
vec

(
IT (ωj)−EIT (ωj)

) = op(1)� (B.4)

Establishing this result faces some difficulty because φT (ω) has a finite number of dis-
continuities within [0
π] due to the presence ofW (ω), implyingφT (ωj)−φTM(ωj) does
not converge uniformly to zero over [0
π] (the Gibbs phenomenon). However, results in
Hannan (1970, pp. 506–507) imply that φTM(ω) converges uniformly to φT (ω) over all
closed intervals excluding the jumps. At the jumps, the approximation errors remain
bounded. Assume the jumps occur at ω̃k (k= 1
 � � � 
K). Then, for any ε > 0, there exist
finite constantsM > 0 and C > 0 independent of T , such that

∥∥φTM(ω)−φT (ω)
∥∥ ≤

⎧⎪⎪⎨
⎪⎪⎩
C
 ifω ∈ I1 ≡

K⋃
k=1

[
ω̃k − ε
 ω̃k + ε]


ε
 ifω ∈ [0
π] butω /∈ I1�
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By applying the above partition, (B.4) can be decomposed into

1

2
√
T

[T/2]∑
j=1

1(ωj ∈ I1)
(
φT (ωj)−φTM(ωj)

)∗
vec

(
IT (ωj)−EIT (ωj)

)
(T1)

+ 1

2
√
T

[T/2]∑
j=1

1(ωj /∈ I1)
(
φT (ωj)−φTM(ωj)

)∗
vec

(
IT (ωj)−EIT (ωj)

)
� (T2)

For the first term,

∥∥Var(T1)
∥∥ ≤ C2

T

[T/2]∑
j=1

1(ωj ∈ I1)
∥∥Var

{
vec

(
IT (ωj)−EIT (ωj)

)}∥∥

+ C2

T

[T/2]∑
j=1

[T/2]∑
h=1
h�=j

1(ωj ∈ I1)

× ∥∥E{
vec

(
IT (ωj)−EIT (ωj)

)
vec

(
IT (ωh)−EIT (ωh)

)∗}∥∥
≤ C2

T

[T/2]∑
j=1

1(ωj ∈ I1)D+ C2

T 2

[T/2]∑
j=1

[T/2]∑
h=1

1(ωj ∈ I1)D


whereD is some finite constant and the second inequality follows from Theorem 11.7.1
in Brockwell and Davis (1991), that is, for any ωj and ωh in [0
π],

E
{

vec
(
IT (ωj)−EIT (ωj)

)
vec

(
IT (ωh)−EIT (ωh)

)∗} =
{
O(1)
 if h= j

O

(
T−1)
 otherwise�

Because the length of I1 can be made arbitrarily small by choosing a small ε and a large
M , we have Var(T1)= o(1). Similar arguments can be applied to (T2),

∥∥Var(T2)
∥∥ ≤ T−1ε2

[T/2]∑
j=1

1(ωj /∈ I1)D+ ε2T−2
[T/2]∑
j=1

[T/2]∑
h=1

1(ωj /∈ I1)D≤ 2Dε2


which can again be made small by choosing a small ε and a large M . Thus, Var(T2) =
o(1). Combining the above results, we have proved (B.4).

It remains to analyze the first term in (B.3). Apply the definition of φTM(ωj),

1

2
√
T

T−1∑
j=1

φTM(ωj)
∗ vec

(
IT (ωj)−EIT (ωj)

)

= 1
4π

M−1∑
s=−M−1

(
1 − |s|

M

)
ηT (s)

∗{√T vec
(
Γ̂ (s)−EΓ̂ (s)

)}
(T3)

+ 1
4π

M−1∑
s=−M−1

(
1 − |s|

M

)
ηT (s)

∗{√T vec
(
Γ̂ (s− T)−EΓ̂ (s− T))}
 (T4)
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where the last equality uses
∑T
s=1 exp(−isωj)= 0 unless s = kT (k= 0
±1
 � � �) and

Γ̂ (s)=

⎧⎪⎪⎨
⎪⎪⎩
T−1

T−s∑
t=1

(
Yt+s −μ(θ0)

)(
Yt −μ(θ0)

)′

 if 0 ≤ s ≤ T − 1


Γ̂ (−s)′
 if −T + 1 ≤ s ≤ 0�

Term (T4) converges in probability to zero. This is because M is finite, ηT (s)∗ is uni-
formly bounded, and

√
T vec(Γ̂ (s − T)− EΓ̂ (s − T))→p 0 for each |s| <M by the def-

inition of Γ̂ (s − T) (note that the summation in the definition of Γ̂ (s − T) involves at
most M terms). In (T3),

√
T vec(Γ̂ (s)− EΓ̂ (s)) satisfies a central limit theorem for each

|s| ≤M ; see Hannan (1976). Thus, (T3) converges to a vector of normal random variables
because M is finite. Therefore, ξ1T has a multivariate normal limiting distribution. For
ξ2T , ψT is finite because of Assumption W. Its asymptotic normality then follows from
the central limit theorem.

Step 2. For ξ1T , it suffices to examine the covariance matrix of (T3). Apply the definition
of ηT (s) and use the relationship between the vec and the trace operator. Its lth element
can be written as

ξTM(l) = 1
8π2

M−1∑
s=−M−1

(
1 − |s|

M

)
(B.5)

×
∫ π

−π
W (ω) tr

{
B(l
ω)

√
T

(
Γ̂ (s)−EΓ̂ (s)

)}
exp(−isω)dω


where

B(l
ω)= f−1
θ0
(ω)

( q∑
k=1

∂fθ0(ω)

∂θk

[
QcT (θ0)Λ

c
T (θ0)

−1/2]
kl

)
f−1
θ0
(ω)

with [·]kl denoting the (k
 l)th element of the matrix inside the bracket. Because B(l
ω)
is an nY -by-nY matrix, (B.5) can be further rewritten as

ξTM(l) = 1
8π2

M−1∑
s=−M−1

(
1 − |s|

M

)

×
∫ π

−π
W (ω)

{
nY∑
a
b=1

Bba(l
ω)
√
T

(
Γ̂ab(s)−EΓ̂ab(s)

)}
exp(−isω)dω


where Bba(l
ω) is the (b
a)th element of the corresponding matrix. Therefore,

Cov
(
ξTM(l)
ξTM(k)

)
= 1

64π4

nY∑
a
b
c
d=1

∫ π

−π

∫ π

−π
W (r)Bba(l
 r)W (λ)Bdc(k
λ)

∗ (B.6)
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×
M−1∑

s
h=−M+1

(
1 − |s|

M

)(
1 − |h|

M

)

×E
{
T

(
Γ̂ab(s)−EΓ̂ab(s)

)(
Γ̂cd(h)−EΓ̂cd(h)

)}
exp(−isr)dr exp(ihλ)dλ�

The only random elements in (B.6) are the sample autocovariances, which satisfy (see
equation (3) on p. 397 in Hannan (1976))

E
{
T

(
Γ̂ab(s)−EΓ̂ab(s)

)(
Γ̂cd(h)−EΓ̂cd(h)

)}
→ 2π

∫ π

−π
fac(ω)fbd(ω)exp

(−i(h− s)ω)
dω (T5)

+ 2π
∫ π

−π
fad(ω)fbc(ω)exp

(
i(s+ h)ω)

dω
 (T6)

where fac(ω) stands for the (a
 c)th element of fθ0(ω). Applying (T5) to (B.6) leads to

1
8π

∫ π

−π

q∑
a
b
c
d=1

fac(ω)fbd(ω)

×
(∫ π

−π
W (r)Bba(l
 r)

{
1

2π

M−1∑
s=−M+1

(
1 − |s|

M

)
exp

(−is(r −ω))
}
dr

)

×
(∫ π

−π
W (λ)Bdc(k
λ)

∗
{

1
2π

M−1∑
h=−M+1

(
1 − |h|

M

)
exp

(−ih(ω− λ))
}
dλ

)
dω�

The two terms inside the two curly brackets are Fejér’s kernels. Therefore,

∫ π

−π
W (r)Bba(l
 r)

{
1

2π

M−1∑
s=−M+1

(
1 − |s|

M

)
exp

(−is(r −ω))
}
dr →W (ω)Bba(l
ω)


∫ π

−π
W (λ)Bdc(k
λ)

∗
{

1
2π

M−1∑
h=−M+1

(
1 − |h|

M

)
exp

(−ih(ω− λ))
}
dλ

→W (ω)Bdc(k
ω)
∗

uniformly over all closed intervals excluding the jumps. At the jumps, the approximation
error is finite and, therefore, it does not interfere with the limiting results. The effect of
(T6) can be analyzed similarly. Combining the two results, we have

Cov
(
ξTM(l)ξTM(k)

)
→ 1

8π

∫ π

−π

nY∑
a
b
c
d=1

W (ω)
{
fac(ω)fbd(ω)Bba(l
ω)Bdc(k
ω)

∗

+ fad(ω)fbc(ω)Bba(l
ω)Bdc(k
−ω)∗
}
dω
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= 1
4π

∫ π

−π
W (ω) tr

{
fθ0(ω)B(k
ω)fθ0(ω)B(l
ω)

}
dω

= 1
2T

T−1∑
j=1

W (ωj)vec
(
B(l
ωj)

)∗(
fθ0(ωj)

′ ⊗ fθ0(ωj)
)

vec
(
B(k
ωj)

) + o(1)


where the first equality uses Bdc(k
ω)∗ = Bcd(k
ω), fbd(ω) = fdb(ω), fbc(ω) = fcb(ω),
Bdc(k
−ω)∗ = Bdc(k
ω), and the last equality follows because the summand belongs to
Lip(β) with β> 1/2. In matrix notation, the above result can be stated as

Var(ξ1T )

=ΛcT (θ0)
−1/2QcT (θ0)

′

×
{

1
2T

T−1∑
j=0

W (ωj)

(
∂vec fθ0(ωj)

∂θ′

)∗(
f−1
θ0
(ωj)

′ ⊗ f−1
θ0
(ωj)

)∂vec fθ0(ωj)

∂θ′

}

×QcT (θ0)Λ
c
T (θ0)

−1/2 + o(1)�

Now consider ξ2T . It is asymptotically independent of ξ1T , satisfying

Var(ξ2T )→ 1
2π
ΛcT (θ0)

−1/2QcT (θ0)
′

×
{
W (0)

∂μ(θ0)
′

∂θ
f−1
θ0
(0)
∂μ(θ0)

∂θ′

}
QcT (θ0)Λ

c
T (θ0)

−1/2�

Therefore, Var(ξ1T + ξ2T ) = ΛcT (θ0)
−1/2QcT (θ0)

′MT(θ0)Q
c
T (θ0)Λ

c
T (θ0)

−1/2 + o(1) →
Iq1+q2 , where the last equality uses the definition ofQcT (θ0) and ΛcT (θ0). �

Additional proof. This proof shows that the confidence band covers the impulse re-
sponse function with probability at least (1 − α) asymptotically. Let Cθ(1 − α) denote
the (1 −α) confidence set for θ obtained by inverting ST (θ) and let CIR denote the confi-
dence band for the impulse response function obtained from Steps 1–3. By construction,
if θ0 ∈ Cθ(1 − α), then IR(θ0) ∈ CIR. Thus, if IR(θ0) /∈ CIR, then θ0 /∈ Cθ(1 − α). Equiva-
lently, Pr(IR(θ0) /∈ CIR) ≤ Pr(θ0 /∈ Cθ(1 − α)). As T → ∞, Pr(θ0 /∈ Cθ(1 − α))→ α. There-
fore, limT→∞ Pr(IR(θ0) /∈ CIR)≤ α. �

Eigenvalue conditions that correspond to other characterizations of weak identification

We illustrate that the characterizing conditions for weak identification used in the IV
and GMM literature can be stated using the curvatures of the criterion functions used
for inference as in Assumption W.

Linear IV (Staiger and Stock (1997)): Consider the model y = Yβ + u, Y = ZΠ + v,
where y and Y are T × 1 vectors, Z is a T × K matrix of instruments, and u and v are
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T × 1 vectors of disturbances with Euu′ = σ2
uIT . The objective function is Q(β) = (y −

Yβ)′PZ(y −Yβ). Its first order derivative, normalized by T−1/2, equals

DT(β0)= −2T−1/2u′ZΠ − 2T−1/2(u′Z
)(
Z′Z

)−1(
Z′v

)
�

Ifβ0 is strongly identified, that is,Π is nonzero and independent of T , then the first term
inDT(β0) is of exact order Op(1) and the second is Op(T−1/2). Therefore,

lim
T→∞

E
(
DT(β0)DT (β0)

′) = lim
T→∞

4T−1
E

(
Π′Z′ZΠ

)
σ2
u


consistent with the order of Λ1T (θ0) in Assumption W. If β0 is weakly identified, that
is, Π = T−1/2C, then DT(β0) is of exact order Op(T−1/2). Therefore, the eigenvalue of
E(DT (β0)DT (β0)

′) is of order O(T−1), consistent with the order of Λ2T (θ0) in Assump-
tion W.

Weak identification in a continuous updating GMM (CU-GMM) setting (Kleibergen
(2005)): Consider inference based on the moment restriction Eφt(θ0) = 0 with θ0 ∈
Rm. Without loss of generality, assume φt(θ0) is serially uncorrelated. Let fT (θ) =
T−1/2 ∑T

t=1φt(θ). Then the CU-GMM criterion function is given by QT(θ) =
fT (θ)

′V̂ff (θ)−1fT (θ), where V̂ff (θ)→p Vff (θ)= limT→∞ Var(fT (θ)). Define

∂fT (θ0)

∂θ′ = qT (θ0)= (
q1
T (θ0)
 � � � 
 qm
T (θ0)

)
�

Kleibergen (2005) characterized the strength of identification using the order of EqT (θ0).
Under strong identification, T−1/2

EqT (θ0) has a fixed full rank value, while under weak
identification T−1/2

EqT (θ0)= T−1/2C. We have

DT(θ0)
′ = 2T−1/2fT (θ0)

′V̂ff (θ0)
−1(R̂T (θ0)−EqT (θ0)

)
(a)

+ 2T−1/2fT (θ0)
′V̂ff (θ0)

−1
EqT (θ0)
 (b)

where the jth column of R̂T (θ0) equals qj
T (θ0) − V̂θf
j(θ0)V̂ff (θ0)
−1fT (θ0), that is, the

residual from projecting qj
T (θ0) onto fT (θ0); V̂θf
j(θ0) is the sample covariance between
fT (θ0) and qj
T (θ0). Thus,

E
(
DT(θ0)DT (θ0)

′) = E
(
a′a

) +E
(
b′b

) +E
(
a′b

) +E
(
b′a

)
�

The first term E(a′a) is of orderO(T−1) irrespective of the strength of identification. The
second term E(b′b) is of exact order O(1) under strong and O(T−1) under weak iden-
tification, respectively. The order of E(b′b)+ E(a′b) is always lower than that of E(b′b).
Therefore, the eigenvalues of E(DT (θ0)DT (θ0)

′) areO(1) under strong identification and
O(T−1) under weak identification, consistent with Assumption W in the paper.

Weak identification under a GMM setting (Stock and Wright (2000)): Consider the
same setup as in the CU-GMM case, but with inference based on the GMM criterion
function

QT(θ)= fT (θ)′WTfT (θ)
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where WT is some consistent estimate of the optimal weighting matrix that is, without
loss of generality, assumed to be nonrandom. Then

DT(θ0)
′ = 2T−1/2fT (θ0)

′WT
(
qT (θ0)− R̂T (θ0)

)
(c)

+ 2T−1/2fT (θ0)
′WT

(
R̂T (θ0)−EqT (θ0)

)
(d)

+ 2T−1/2fT (θ0)
′WTEqT (θ0)� (e)

Simple algebra shows that the leading term in E(DT (θ0)DT (θ0)
′) is

E
(
c′c

) +E
(
c′e

) +E
(
e′c

) +E
(
d′d

) +E
(
e′e

)
�

The first four terms are always of order O(T−1) irrespective of the strength of identifi-
cation. The last term converges to a positive definite matrix under strong identification.
Therefore, all the eigenvalues of E(DT (θ0)DT (θ0)

′) are of order O(1) under strong iden-
tification.

Under weak identification, Stock and Wright (2000) assumed that θ admits a parti-
tion θ = (α′
β′)′, such that α is weakly identified while β is strongly identified. Specif-
ically, let mT(α
β) = EfT (α
β), and write mT(α
β) = mT(α0
β0) + T−1/2m1T (α
β) +
m2T (β) with m1T (α
β) = T 1/2(mT (α
β) − mT(α0
β)) and m2T (β) = mT(α0
β) −
mT(α0
β0). Stock and Wright (2000) assumed (cf. Assumption C in their paper)

m1T (α
β)→m1(α
β) and m2T (β)→m2(β)�

Let CT = Diag(T 1/2Idim(α)
 Idim(β)). Then

CTE
(
e′e

)
CT

= 4T−1CTEqT (θ0)
′WTE

(
fT (θ0)fT (θ0)

′)WTEqT (θ0)CT

= 4T−1CTEqT (θ0)
′(WTVff (θ0)WT

)
EqT (θ0)CT

→ 4
[
∂m1(α0
β0)

∂α′
∂m2(β0)

∂β′

]′
V −1
ff (θ0)

[
∂m1(α0
β0)

∂α′
∂m2(β0)

∂β′

]
�

The limit is a positive definite matrix. Therefore, in large samples, E(e′e) has dim(β)
eigenvalues that are O(1) and dim(α) eigenvalues of order O(T−1); so does E(DT (θ0)×
DT(θ0)

′).

Weak identification in a two-equation model

The model consists of two equations,

rt = γyt +βπt + ut

πt = ρπt−1 + vt


with var(ut) = σ2
u, var(vt) = σ2

v , cov(ut
 vt) = σuv, and Eutus = Evtvs = Eutvs = 0 for all
t �= s. The first equation is a monetary policy rule (Taylor (1993)) with yt and πt being de-
viations of GDP and inflation from their targets, and the second equation describes the



Supplementary Material Inference in DSGE models 9

inflation dynamics. The parameter of interest isβ. To simplify the derivation, we assume
ρ, γ, and σ2

v are known. The unknown parameter vector is, therefore, θ= (β
σ2
u
σuv).

Rewrite the model as

r̃t = βπt + ut

(B.7)

πt = ρπt−1 + vt


with r̃t = rt − γyt . It can then be viewed as a dynamic version of the limited information
simultaneous equation model, in which πt is the endogenous explanatory and πt−1 is
the instrument. The parameter β is weakly identified if ρ is small. Intuitively, because
there is little persistence in πt , it is difficult to differentiate between systematic policy
responses (βπt ) and random disturbances (ut ). Geometrically, it is possible to move
θ along a certain direction such that the likelihood surface changes little. In the ex-
treme case with ρ = 0, β becomes unidentified. Then there exists a path along which
the likelihood is completely flat. (It turns out that changing θ in the direction given by
(1
−2σuv
−σ2

v ) yields such a non-dentification curve.)
We let ρ = T−1/2c with c > 0; other parameter values are independent of T . Let

W (ω)= 1 for all ω ∈ [−π
π].

Lemma B.1. Let θ0 denote the true value of θ = (β
σ2
u
σuv). Then MT(θ0) satisfies the

following statements:

(i) It has two positive eigenvalues λ1T and λ2T that satisfy Tλ1T → ∞ and Tλ2T → ∞.

(ii) The smallest eigenvalue λ3T satisfies

Tλ3T → 16π2σ4
v c

2

(1 + σ4
v + 4σ2

uv)(σ
2
vσ

2
u − σ2

uv)
�

(iii) The elements of

∂vec fθ0(ω)

∂θ′ QT(θ0)ΛT (θ0)
−1/2

are bounded and Lipschitz continuous in ω.

Note that Lemma B.1(i) corresponds to Assumption W(i), while Lemma B.1(ii) corre-
sponds to Assumption W(ii); Lemma B.1(iii) is a stronger result than Assumption W(iv).
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