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This appendix collects supplemental material for the main article. Appendix A
provides relevant technical details, particularly an expected utility version of
the model from Section 2.2 (Appendix A.1), a description of the estimation ap-
proach for the proportional hazards model used in Section 3 of the main text (Ap-
pendix A.2), a detailed discussion of the impact of the mixed nature of the dataset
described in Section 3 of the main text (Appendix A.3), the derivation of the non-
parametric estimates of excess hazard used in Sections 4 and 5 of the main text
(Appendix A.4), and an extension of the model from Section 2.2 with price uncer-
tainty that is relevant for robustness analyses with regards to omitted variables in
Section 6.1 of the main text (Appendix A.5). Appendix B presents additional re-
sults for the analyses in Sections 3, 4, and 5 in the main text. Appendix C presents
a Monte Carlo experiment on the settlement process when brokers or policyhold-
ers “cherry-pick” among LEs or offers as discussed in Section 5.2, part (iii) in the
main text.

Appendix A: Technical appendix

A.1 Expected utility version of the model from Section 2.2

The policyholder’s proclivity for settling, ψ, can be characterized in an expected utility
framework. Consider the setting from Section 2.2, where the policyholder is endowed
with a one-period life insurance policy with face value f and wealth w. The policy-
holder’s utility function when alive is u(·), with u′′ < 0 < u′. If the policyholder dies by
the end of the period, she receives utility, v(·), from her dependents’ consumption of
bequests, with v′′ < 0< v′. Again we set the risk-free rate to zero.

The policyholder solves two distinct optimization problems to obtain her total ex-
pected utility. When not settling her policy, the policyholder chooses an optimal con-
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sumption level at time 0, cn, to maximize her expected utility in

Vn = max
cn
u(cn)+ [

(1 − q)× u(w− cn)+ q× v(w+ f − cn)
]
�

Here, q is once again the probability for dying before time one. On the other hand, when
accepting a settlement at price π for the policy, the policyholder’s optimization problem
becomes

Vs = max
cs
u(cs)+ [

(1 − q)× u(w+π − cs)+ q× v(w+π − cs)
]
�

Equating Vn and Vs results in a reservation offer price π∗ that makes the policyholder in-
different between keeping or settling her policy, and it immediately follows from equa-
tion (1) that ψ = qf − π∗, that is, the policyholder will gladly settle at any price that is
higher than qf −ψ= π∗.

In what follows, we assume that v(·)= b× u(·), where b ∈ [0�1] measures the inten-
sity of the bequest motive (see Fischer (1973), e.g.). We further adopt a logarithmic spec-
ification of the utility, u(·)= ln(·), as a special case of the constant relative risk aversion
utility function (relative risk aversion is one). This allows us to obtain explicit expression
of ψ, and analyze how settling is affected by the primitives of our model.

Lemma A.1. With u(·)= ln(·), the optimal consumption levels are

cn =
3w+ 2f − qf − qw+ bqw−

√
(3w+ 2f − qf − qw+ bqw)2 − 4(2 + bq− q)(w2 +wf )

2 × (2 + bq− q)
and

cs = w+π
2 + bq− q �

Proof. The first-order condition of Vn w.r.t. cn yields

1
cn

− 1 − q
w− cn − bq

w+ f − cn = 0� (A.1)

which can be expressed as

(2 + bq− q)c2
n − (3w+ 2f − qf − qw+ bqw)cn + (

w2 +wf )= 0�

Given cn < w, the optimal consumption cn is the left root of the above quadratic equa-
tion.

Similarly, the first-order condition of Vs w.r.t. cs yields

1
cs

− 1 + bq− q
w+π − cs = 0� (A.2)

which immediately gives the optimal consumption cs = (w+π)/(2 + bq− q).
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Proposition A.1. The policyholder’s proclivity for settling, ψ, is

ψ=w+ qf − A
1

2+bq−q
1 ×A

1−q
2+bq−q
2 ×A

bq
2+bq−q
3

(1 + bq− q)
1+bq−q
2+bq−q

�

where

A1 ≡
3w+ 2f − qf − qw+ bqw−

√
(3w+ 2f − qf − qw+ bqw)2 − 4(2 + bq− q)(w2 +wf )

2
�

A2 ≡ (2 + bq− q)w−A1�

and

A3 ≡ (2 + bq− q)(w+ f )−A1�

Proof. Plugging the optimal consumption levels cn and cs from Lemma A.1 back into
Vn and Vs , we obtain

Vn = u(cn)+ (1 − q)u(w− cn)+ bqu(w+ f − cn)

= ln
(

A1

2 + bq− q
)

+ (1 − q) ln
(

A2

2 + bq− q
)

+ bq ln
(

A3

2 + bq− q
)

= ln
(
A1 ×A1−q

2 ×Abq3

)− (2 + bq− q) ln(2 + bq− q)
and

Vs = u(cs)+ (1 + bq− q)u(w+π − cs)

= ln
(

w+π
2 + bq− q

)
+ (1 + bq− q) ln

(
w+π

2 + bq− q × (1 + bq− q)
)

= (2 + bq− q) ln(w+π)− (2 + bq− q) ln(2 + bq− q)+ (1 + bq− q) ln(1 + bq− q)�
Equating Vn and Vs yields

ln
(
A1 ×A1−q

2 ×Abq3

)= (2 + bq− q) ln
(
w+π∗)+ (1 + bq− q) ln(1 + bq− q)�

which gives the reservation offer price π∗ as

π∗ = A
1

2+bq−q
1 ×A

1−q
2+bq−q
2 ×A

bq
2+bq−q
3

(1 + bq− q)
1+bq−q
2+bq−q

−w�

and hence

ψ= qf −π∗ =w+ qf − A
1

2+bq−q
1 ×A

1−q
2+bq−q
2 ×A

bq
2+bq−q
3

(1 + bq− q)
1+bq−q
2+bq−q

�

We now evaluate how the proclivity for settling (ψ) varies with wealth (w), face value
(f ), and bequest motive (b). The following lemma proves helpful in this pursuit.
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Lemma A.2. When π = π∗, cs ≥ cn.

Proof. Plugging π∗ back into cs , we obtain

cs = A
1

2+bq−q
1 ×A

1−q
2+bq−q
2 ×A

bq
2+bq−q
3

(1 + bq− q)
1+bq−q
2+bq−q × (2 + bq− q)

�

whereas cn can be expressed as

cn = A1

2 + bq− q �

Therefore, cs ≥ cn is equivalent to

A
1

2+bq−q
1 ×A

1−q
2+bq−q
2 ×A

bq
2+bq−q
3

(1 + bq− q)
1+bq−q
2+bq−q

≥A1�

which simplifies to

A
1−q

1+bq−q
2 ×A

bq
1+bq−q
3

?≥A1 × (1 + bq− q)� (A.3)

We note that the F.O.C. (A.1) can also be expressed as

1
A2

× 1 − q
(1 + bq− q) + 1

A3
× bq

(1 + bq− q) = 1
A1

× 1
(1 + bq− q) �

Since 1−q
1+bq−q ∈ [0�1], bq

1+bq−q ∈ [0�1], and 1−q
1+bq−q + bq

1+bq−q = 1, it immediately follows
from the weighted AM-GM inequality that

1
A1

× 1
(1 + bq− q) = 1

A2
× 1 − q
(1 + bq− q) + 1

A3
× bq

(1 + bq− q)

≥
(

1
A2

) 1−q
(1+bq−q) ×

(
1
A3

) bq
(1+bq−q)

�

which gives

A1 × (1 + bq− q)≤A
1−q

1+bq−q
2 ×A

bq
1+bq−q
3 �

Therefore, inequality (A.3) holds, and thus cs ≥ cn.

Proposition A.2. The policyholder’s proclivity for settling (ψ) decreases in wealth and
bequest motive, and increases in face value, ceteris paribus. That is,

dψ

dw
≤ 0�

dψ

db
≤ 0� and

dψ

df
≥ 0�
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Moreover, the proclivity for settling per unit of face value, ψ/f , increases in face value in
the right-hand limit. That is,

d(ψ/f )

df
> 0� as f → ∞�

Proof. Define V ≡ Vn − Vs = 0. We use implicit differentiation by treating ψ as an im-
plicit function of w, b, or f , when taking derivative of V to each of them, respectively.

(i) dψ/dw≤ 0
Taking the derivative of V with respect to w, we have

0 = dV

dw

= 1
cn

dcn

dw
+ 1 − q
w− cn

(
1 − dcn

dw

)
+ bq

w+ f − cn
(

1 − dcn

dw

)

−
{

1
cs

(
dcs

dw
+ dcs

dψ
× dψ

dw

)
+ 1 + bq− q
w+ qf −ψ− cs

(
1 − dψ

dw
− dcs

dw
− dcs

dψ

dψ

dw

)}
�

Using the F.O.C.s (A.1) and (A.2), we can simplify the above equation to

1 − q
w− cn + bq

w+ f − cn − 1 + bq− q
w+ qf −ψ− cs

(
1 − dψ

dw

)
= 0�

It is then straightforward that dψ/dw≤ 0 is equivalent to

1 − q
w− cn + bq

w+ f − cn ≥ 1 + bq− q
w+ qf −ψ− cs �

Once again, using equations (A.1) and (A.2), the inequality can be further modified to

1
cn

≥ 1
cs
�

which is shown in Lemma A.2.
(ii) dψ/db≤ 0
Taking the derivative of V with respect to b, we have

0 = dV

db

= 1
cn

dcn

db
− 1 − q
w− cn

dcn

db
− bq

w+ f − cn
dcn

db
+ q ln(w+ f − cn)

−
{

1
cs

(
dcs

db
+ dcs

dψ
× dψ

db

)
− 1 + bq− q
w+ qf −ψ− cs

(
dψ

db
+ dcs

db
+ dcs

dψ

dψ

db

)
+ q ln(w+ qf −ψ− cs)

}
�

Using the F.O.C.s (A.1) and (A.2), this simplifies to

q ln
(

w+ f − cn
w+ qf −ψ− cs

)
+ 1 + bq− q
w+ qf −ψ− cs

dψ

db
= 0�
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Since (1 +bq−q)/(w+qf −ψ− cs) > 0, dψ/db≤ 0 is equivalent tow+ f − cn ≥w+qf −
ψ− cs ⇔ cs ≥ cn+qf −ψ− f , which is also immediately available from Lemma A.2 since
qf −ψ− f = π∗ − f ≤ 0.1

(iii) dψ/df ≥ 0
Taking the derivative of V with respect to f , we have

0 = dV

df

= 1
cn

dcn

df
+ 1 − q
w− cn

(
−dcn
df

)
+ bq

w+ f − cn
(

1 − dcn

df

)

−
{

1
cs

× dcs

dψ

dψ

df
+ 1 + bq− q
w+ qf −ψ− cs

(
q− dψ

df
− dcs

dψ

dψ

df

)}
�

Using the F.O.C.s (A.1) and (A.2), this simplifies to

bq

w+ f − cn + 1 + bq− q
w+ qf −ψ− cs

(
dψ

df
− q

)
= 0�

Since both bq/(w+ f − cn) and (1 + bq− q)/(w+ qf −ψ− cs) are positive, it is trivial to
show that 0 ≤ dψ/df < q is equivalent to

1 + bq− q
w+ qf −ψ− cs × q≥ bq

w+ f − cn �

which can be further modified to

(1 + bq− q)(w+ f − cn)≥ b(w+ qf −ψ− cs)�
This inequality holds since 1 + bq− q− b= (1 − b)(1 − q)≥ 0, and w+ f − cn ≥w+ qf −
ψ− cs as proven in part (ii) above.

(iv) d(ψ/f )/df > 0, as f → ∞
Recall that ψ= qf −π∗. Therefore, d(ψ/f )/df > 0 is equivalent to d(π∗/f )/df < 0. As

f → ∞, we obtain

Vn ∝ bq ln(f ) and Vs ∝ (2 + bq− q) ln(π)�

Therefore, by equating Vn and Vs as f → ∞, we can express π∗ as

π∗ = C × f
bq

2+bq−q �

where C is a positive constant. It immediately follows that π∗/f = C × f (q−2)/(2+bq−q)
with first-order derivative

d
(
π∗/f

)
df

= C︸︷︷︸
>0

× q− 2
2 + bq− q︸ ︷︷ ︸

<0

× f
q−2

2+bq−q−1︸ ︷︷ ︸
>0

< 0� f → ∞

and, therefore, d(ψ/f )/df > 0, as f → ∞.

1By comparing Vn and Vs , it is immediately clear that π∗ ≤ f because otherwise Vs will always be strictly
higher than Vn.
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A.2 Estimation approach for the proportional hazards model

Consider a proportional hazards model of the form:

μt(Z)= β0(t)× exp
{
β′ ·Z(t)}� (A.4)

in which β is the vector of regression parameters and Z(t) are (possibly) time-varying
covariates. The nonparametric term β0(t) is also referred to as the nuisance parameter
when the emphasis is on the estimation of the regression coefficients.

For a set of n independent subjects, define the observation time Xi = min{Ti�Ci},
i ∈ {1� � � � � n}, where Ti is the failure time (time until death) and Ci is the censoring time
(time until end of observation period) for subject i. The indicator for observed death of
subject i is defined as �i = 1{Ti<Ci}. We further define the ith at-risk and observed-death
counting processes as Yi(t)= 1{Xi≥t} andNi(t)= 1{Ti≤t��i=1}, respectively.

The partial log-likelihood function of (A.4) was first derived in Cox (1975), and in
our specification with time-varying covariates can be expressed as (see equation (1.2) in
Andersen and Gill (1982)):

l(β)=
n∑
i=1

�i

{
β′ ·Zi(Ti)− ln

(
n∑
j=1

Yj(Ti)exp
{
β′ ·Zj(Ti)

})}
�

Differentiating yields the (partial-likelihood) score function:

U(β) = ∂l(β)

∂β
=

n∑
i=1

�i

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
Zi(Ti)−

n∑
j=1

Yj(Ti)Zj(Ti)exp
{
β′ ·Zj(Ti)

}
n∑
j=1

Yj(Ti)exp
{
β′ ·Zj(Ti)

}
︸ ︷︷ ︸

Z̄(Ti)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
n∑
i=1

∫ ∞

0

[
Zi(t)− Z̄(t)]dNi(t)�

The parameter vector is then estimated as the solution to the score equation U(β)= 0,
without estimating the nuisance parameter β0(t).

In our specification (4), the estimated hazard μ̂(i)t is the only time-varying covariate.
Here, we assume that the estimated hazard only changes on a monthly basis, so that
within each month all covariates remain constant. Hence, we can write the integral in
the score function as

U(β) =
n∑
i=1

{∫ 1/12

0

[
Zi(t)− Z̄(t)]dNi(t)+

∫ 2/12

1/12

[
Zi(t)− Z̄(t)]dNi(t)+ · · ·

}

=
n∑
i=1

{[
Zi(0)− Z̄(0)] · [Ni(1/12)−Ni(0)

]
+ [
Zi(1/12)− Z̄(1/12)

] · [Ni(2/12)−Ni(1/12)
]+ · · ·}�
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and then numerically solve for the maximum (partial) likelihood estimate β̂. We refer
to Section 4.2 of Schnaubel and Wei (2007) for a similar discretization technique in a
setting with time-varying covariates.

In the presence of unobserved heterogeneity (see Sections 3.3 and 5.2 in the main
text), Lin, Wei, Yang, and Ying (2000) showed that the point estimates remain consistent
for the mean function or the cumulative rates. However, Lin and Wei (1989) argued that
the standard Fisher information matrix Î(β̂) no longer provides an adequate estimator
for the variance of β̂. Thus, here we calculate so-called sandwich variance estimates (Lin
and Wei (1989)) that account for model misspecification in the parametric setting. In
particular, the asymptotic covariance matrix is estimated via

V̂ (β̂)= Î−1(β̂)×
(

1
n

n∑
i=1

Ui(β̂)×U ′
i (β̂)

)
︸ ︷︷ ︸

Σ̂(β̂)

× Î−1(β̂)�

where Ui(β) = ∫∞
0 [Zi(t) − Z̄(t)]dNi(t) is the contribution from the ith observation to

the total score function U(β).

A.3 Impact of the mixed nature of the remaining subsample

As discussed in Section 3 of the main text, the estimate for the regression coefficient γ
of the Settled-and-Observed variable generally does not provide a consistent estimate
for the difference between closed and nonclosed cases due to the mixed nature of the
subsample of remaining policies. Put differently, since the remaining cases include both
nonclosed and closed cases, γ will not constitute a suitable adjustment for closed cases
relative to individuals that did not settle their policy but will only amount to a fraction
of the “true” difference and, therefore, needs to be inflated. In what follows, we derive
appropriate inflation formulae for the proportional hazards model and the additive haz-
ards model.

Proportional hazards model To illustrate, consider the following simplified version of
our proportional hazards model (4):

μ(i)t = β0(t)× exp{γSaOi}� (A.5)

Denote by Yt all remaining observations at time t, by Y(1)t all remaining settled/closed
cases at time t (unobserved), pt = Y(1)t /Yt , and by Y(2)t all remaining Settled-and-
Observed cases at time t, qt = Y(2)t /Yt . Denote by Ni(t) the death counting process
for policyholder i akin to Section A.2. Furthermore, denote by γact the unknown ac-
tual regression coefficient for the model in which the econometrist observes all set-
tlement decisions—effectively replacing the Settled-and-Observed variable (SaOi) by a
corresponding Settled variable (Seti) in (A.5), and by γour our coefficient based on the
Settled-and-Observed cases only. For simplicity, assume further that at any time t, the
probability that a settlement decision is observed is constant. Therefore, based on Lin
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and Ying (1994, equation (2.6)), γact and γour will be solutions to the following (partial)
score functions, respectively:

0 =
n∑
i=1

∫ ∞

t=0

[
Seti − pt

(1 −pt)× exp
{−γ̂act}+pt

]
dNi(t) and

0 =
n∑
i=1

∫ ∞

t=0

[
SaOi − qt

(1 − qt)× exp
{−γ̂our}+ qt

]
dNi(t)�

Integrating and using the assumption that we obtain the number of Settled-and-
Observed deaths from multiplying the number of Settled deaths by the corresponding
proportion (qt/pt ), we obtain that

(1 −p)× exp
{−γ̂act}+p≈ (1 − q)× exp

{−γ̂our}+ q�
where p is the (unknown) overall proportion of settled cases and q is the (known) over-
all proportion of Settled-and-Observed cases in the portfolio, which for simplicity we
assume are constant. Thus, under the assumptions above, a suitable estimator for the
actual difference between closed and non-closed cases under the proportion hazards
assumption is

γ̂act ≈ − ln
(
q−p
1 −p + exp

{−γ̂our}× 1 − q
1 −p

)
� (A.6)

where of course γ̂our corresponds to the estimate from specification (4). In particular,
for γ̂our = 0 we obtain γ̂act = 0, and in case γ̂our < 0 the actual coefficient γ̂act needs to
be inflated (γ̂act < γ̂our < 0).

Additive hazards model Similar to above, we consider the following simplified version
of our additive hazards model (see equation (B.1) in Section B.1):

μ(i)t = β0(t)+ γSaOi� (A.7)

Using the same assumptions and notation, based on the estimates in Lin and Ying
(1994, equation (2.8)) we have

γ̂act

γ̂our =

∫ ∞

0
Y(2)t [1 − qt]dt∫ ∞

0
Y
(2)
t [1 −pt]dt

�

and again using the assumption of constant proportions we obtain

γ̂act

γ̂our ≈ (1 − q)
(1 −p)�

Thus, a suitable estimator for the actual difference between closed and nonclosed cases
under the additive hazards assumption is

γ̂act ≈ γ̂our × (1 − q)
(1 −p)� (A.8)
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where γ̂our corresponds to the estimate from specification (B.1). In particular, since the
ratio (1 − q)/(1 − p) is always greater than one, the inflated coefficient will again be
greater (in its absolute value) than the one estimated from the mixed sample.

A.4 Development of the nonparametric estimators

Following the description in Section 4 of the main text, we derive nonparametric esti-
mates for the excess hazard for policyholders that settled their policy as a function of
time. To formalize our notion of excess hazard, assume we are given two individuals S
and R with hazard rates {μSt }t≥0 and {μRt }t≥0, respectively, that differ only in the infor-
mation regarding their settlement decision but are identical with respect to all observ-
ables. More precisely, assume that we know S settled her policy whereas the settlement
decision forR is unknown. Then we can define the multiplicative excess hazard {α(t)}t≥0

and the additive excess hazard {β(t)}t≥0 via the following relationships (see equation (7)
in the main text):

μSt = α(t)×μRt and μSt = β(t)+μRt �
Andersen and Vaeth (1989) provide nonparametric estimators for the multiplicative

and additive excess hazard by relying on the Nelson–Aalen (N–A) estimator for
∫ t

0 α(s)ds

and the Kaplan–Meier (K–M) estimator for
∫ t

0 β(s)ds, respectively. However, their ap-
proach relies on the assumption that the baseline mortality (μRt in our specification) is
known, whereas we only have available estimates {μ̂(i)t }t≥0, i = 1� � � � � n, given by the LE
provider. Therefore, for the estimation of the multiplicative excess hazard, we instead
use the following three-step procedure that relies on a repeated application of the An-
dersen and Vaeth (1989) estimator:

1. We start with the specification,

μ(i)t =A(t)× μ̂(i)t � i= 1� � � � � n� (A.9)

and use the Andersen and Vaeth (1989) excess hazard estimator to obtain an estimate
for A, say Â, based on the full dataset. Hence, Â corrects systematic deviations of the
given estimates based on the observed times of death (in sample). We set

μ̄(i)t = Â(t)× μ̂(i)t � i= 1� � � � � n

for the corrected individual baseline hazard rate.

2. We then use the specification:

μ(i)t = α(t)× μ̄(i)t (A.10)

for individual i in the closed subsample. Note that if we used the full dataset to estimate
α, we would obtain α(t)≡ 1 and

∫ t
0 α(s)ds would be a straight line with slope one. How-

ever, when applying (A.10) to the subsample of closed policies, the resulting estimate for
α—or rather

∫ t
0 α(s)ds—picks up the residual hazard information due to the settlement

decision.
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3. Finally, we derive an estimate for α from the cumulative estimate (
∫ t

0 α(s)ds) using
a suitable kernel function as in Muller and Wang (1994).

For the additive excess hazard, we proceed analogously replacing equations (A.9)
and (A.10) by

μ(i)t = B(t)+ μ̂(i)t and μ(i)t = β(t)+ [
B̂(t)+ μ̂(i)t

]︸ ︷︷ ︸
=μ̄(i)t

�

respectively.
In the context of Figures 2, 3, and A.2, for the derivation of the derivatives in Step 3,

we use the Epanechnikov kernel with a fixed bandwidth of one.

A.5 A version of the model from Section 2 with price uncertainty

Assume the LS company has access to an additional estimate for the insured’s proba-
bility of death q that is not known to the econometrist, say θ. Here, we assume that the
underlying probability measure P reflects all available information and, to simplify the
presentation, we ignore uncertainty in ψ and let f = 1.2 Since we interpret θ as a sig-
nal for q, we assume (i) that a higher θ will result in a higher offer price, that is, π(θ) is
increasing, and (ii) that q is stochastically increasing in θ. Then it is easy to see that

E
[
q|q < π(θ)+ψ�θ] is increasing as a function of θ� (A.11)

Indeed, it is sufficient to assume the weaker condition (A.11) holds, which solely indi-
cates that the estimate for q conditional on a policyholder settling her policy is increas-
ing in θ.

Now if the econometrist finds a negative correlation between settling and dying, in
the context of this extended model this means

E
[
q|q < π(θ)+ψ]< E[q]� (A.12)

where the conditional expectation on the left-hand side incorporates all the information
available to the econometrist (reflected in P) and the observation that the policyholder
settled. However, the question from the point of view of the LS company is whether there
exists asymmetric information, indicated by a negative correlation, when incorporating
all pricing-relevant information, particularly θ:

E
[
q|q < π(θ)+ψ�θ] ?

< E[q|θ]

for at least some choices of θ. When aggregating over all policyholders,

E
[
E
[
q|q < π(θ)+ψ�θ]] ?

< E
[
E[q|θ]]= E[q]� (A.13)

2The assumption of f = 1 is equivalent to defining π and ψ as settlement price and proclivity per dollar
face value.
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Therefore, the question of whether the observed relationship (A.12) provides definite
evidence for the relevant relationship (A.13) depends on the relationship between the
expectations on the left-hand sides of (A.12) and (A.13). In particular, the implication
will hold if

E
[
E
[
q|q < π(θ)+ψ�θ]]≤ E

[
q|q < π(θ)+ψ]� (A.14)

We need the following lemma.

Lemma A.3. Let X be a real random variable, g be an increasing function such that
E[g(X)] = 0, and h be an increasing and positive function. Then E[g(X)h(X)] ≥ 0.

Proof. LetK = argmaxx{g(x)≤ 0}. Then

0 = E
[
g(X)

]= E
[
g(X)|X ≤K]P(X ≤K)+E

[
g(X)|X >K

]
P(X >K)�

Now clearly g(X)h(K)≤ g(X)h(X) on {X ≤K}, so that

E
[
g(X)h(K)|X ≤K]≤ E

[
g(X)h(X)|X ≤K]�

Similarly,

E
[
g(X)h(K)|X >K

]≤ E
[
g(X)h(X)|X >K

]
�

Thus,

0 = E
[
g(X)h(K)|X ≤K]P(X ≤K)+E

[
g(X)h(K)|X >K

]
P(X >K)

≤ E
[
g(X)h(X)|X ≤K]P(X ≤K)+E

[
g(X)h(X)|X >K

]
P(X >K)

= E
[
g(X)h(X)

]
�

Now, by the tower property of conditional expectations, (A.14) is equivalent to

E
[
E[q1{q<π(θ)+ψ}|θ]

]
P
(
q < π(θ)+ψ) −E

[
E
[
q|q < π(θ)+ψ�θ]]≥ 0

⇔ E

[
E
[
q|q < π(θ)+ψ�θ](P

(
q < π(θ)+ψ|θ)

P
(
q < π(θ)+ψ) − 1

)
︸ ︷︷ ︸

=g(θ)

]
≥ 0�

Since E[q|q < π(θ)+ψ�θ] is increasing as a function of θ by our assumption and since
E[g(θ)] = 0, with the lemma, relationship (A.13) will hold if g is increasing. Note that g is
an affine transformation of the proportion of policyholders deciding to settle given the
estimate θ, so that the pivotal relationship is the increasingness of this proportion in θ.
Conversely, the implication will go in the other direction, so that that the econometrist’s
analysis will potentially overstate the effect, if the proportion of policyholders settling
their policy is decreasing in the estimate.
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Appendix B: Supplemental results

B.1 Additive model specification

In addition to the proportional hazards assumption in Section 3, we alternatively con-
sider an additive hazards regression model (e.g., Aalen, Borgan, and Gjessing (2008)):

μ(i)t = β0(t)+β1μ̂
(i)
t +β2DOUi +β3AUi

+β4SEi +
15∑
j=1

β5�jPIi�j +
2∑
j=1

β6�jSMi�j + γSaOi� (B.1)

where the variables are defined as in equation (4). While less popular, the additive spec-
ification directly resembles the standard regression test for the coverage-risk correlation
as described in Cohen and Siegelman (2010). We rely on the generalized least-squares
(GLS) approach from Lin and Ying (1994) to estimate the coefficient vector and on their
formula for the model likelihood. Column [A] in Table A.1 presents the results for the
basic model (B.1).

Similar to the proportional model, the coefficients for underwriting age, sex, and
the variables relating to smoking status are significant—although underwriting date is
not significant here. The coefficient for the estimated hazard μ̂(i)t , while highly signifi-
cant, with roughly 0�2 is now far away from one as would be the case for “perfect” esti-
mates by the LE provider. This suggests that the proportional model may be better suited
to capture residual effects. Important for our focus, the coefficient for the Settled-and-
Observed covariate again is negative and highly significant. Thus, we again find a strong
negative relationship between settlement and hazard, indicating the existence of asym-
metric information in the life settlements market.

When augmenting the basic specification (B.1) by a linear time trend interacted with
the Settled-and-Observed covariate, SaOi × t, we obtain analogous effects as in the pro-
portional model: The intercept more than doubles, and the coefficient for the time trend
is positive and significant. The model likelihood also increases, and the coefficients for
the nonsettlement related variables are very similar to the basic model. Column [B] in
Table A.1 presents the corresponding estimates (see also Table A.2 for alternative trend
specifications with lower likelihood values). Hence, here our result that the influence of
the informational friction is most pronounced right after settlement but wears off over
time also appears robust.

Similar to Section 6 of the main text, we also run robustness analyses that incorpo-
rate policy face value as a covariate, exclude deaths within 6 months of underwriting in
the remaining subsample, and with latest observation date under the additive specifica-
tion. The results are presented in columns [C] through [E] of Table A.1, where once again
we find highly significant and consistent settlement coefficients.

B.2 Additional regression results

Table A.2 presents supplemental survival regression results based on proportional and
additive hazards specifications. Columns [A] and [B] in the table show results for the ear-
liest observation date with alternative time trend specification under the proportional
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Table A.1. Additive hazards survival regression results. Column [A]: Basic regression (equation
(B.1)), earliest observation date; [B]: With time trend, earliest observation date; [C]: Only con-
sidering cases with known face value (in the entire dataset) and with time trend, face value as
covariate, earliest observation date; [D]: Excluding cases with times of death within 6 months of
underwriting (in the remaining sample) and with time trend, earliest observation date; [E]: With
time trend, latest observation date.

[A] [B] [C] [D] [E]

1/14 × ∫ 14
0 β0(t)dt −0�0090 −0�0090 −0�0010 −0�0094 −0�0108

Estimated hazard, μ̂(i)t 0�2032 0�2031 0�2739 0�1959 0�2264
(0�0067) (0�0067) (0�0182) (0�0066) (0�0073)

Underwriting date, DOUi 0�0001 0�0001 0�0024 3�2 × 10−5 −0�0008
(0�0002) (0�0002) (0�0007) (0�0002) (0�0002)

Age at underwriting, AUi 0�0016 0�0016 0�0008 0�0017 0�0019
(0�0001) (0�0001) (0�0002) (0�0001) (0�0001)

Sex, SEi 0�0043 0�0042 0�0001 0�0043 0�0054
(0�0007) (0�0007) (0�0016) (0�0007) (0�0008)

Smoker, SMi�1 0�0297 0�0297 0�0392 0�0292 0�0313
(0�0026) (0�0026) (0�0095) (0�0026) (0�0029)

“Aggregate” smoking status, SMi�2 0�0115 0�0116 0�0117 0�0115 0�0135
(0�0025) (0�0025) (0�0078) (0�0025) (0�0029)

Face Value, ln(1 + FV) −0�0054
(0�0007)

Settled-and-Observed, SaOi −0�0049 −0�0107 −0�0100 −0�0087 −0�0046
(0�0007) (0�0012) (0�0016) (0�0011) (0�0015)

Settled-and-Observed × trend, SaOi × t 0�0014 0�0033 0�0011 0�0011
(0�0003) (0�0004) (0�0003) (0�0004)

Log-likelihood value −74,521�29 −74,304�23 −6,365�01 −75,599�54 −73,678�67

hazards specification (adding a quadratic trend, SaOi × ln2(1 + t), in column [A] and
adding a linear trend, SaOi × t, in column [B]). Columns [D] and [E] show comparable
results under the additive hazards specification (adding a quadratic trend, SaOi × t2, in
column [D] and adding a logarithmic trend, SaOi× ln(1+ t), in column [E]). As is evident
from the table, the quadratic trend components fail to be significant in both specifica-
tions, whereas the alternative time trend specification in either case provides qualita-
tively similar conclusions on informational frictions, yet with lower likelihood values
when compared with the default trend choices in the main text.

Columns [C] and [F] of Table A.2 present results when using dummy variables for
underwriting date and age at underwriting in the proportional and additive hazards
specification, respectively. Comparing the estimates to the baseline results from Tables 2
and A.1, it is clear that using the log-linear/linear trend did not have a significant impact
on the results. In particular, there is little change in the settlement-related variables that
are in the focus of our analysis. This is also illustrated by Figure A.1 that plots coefficients
of the corresponding dummy variables, from which we note that a basic increasing trend
assumption can capture the relevant shape.
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Table A.2. Survival regression supplemental results. Column [A]: Proportional hazards assump-
tion with additional quadratic trend, earliest observation date; [B]: Proportional hazards as-
sumption with linear time trend, earliest observation date; [C]: Proportional hazards assumption
with logarithmic time trend and dummy variables for underwriting date and age at underwrit-
ing, earliest observation date; [D]: Additive hazards assumption with additional quadratic trend,
earliest observation date; [E]: Additive hazards assumption with logarithmic time trend, earliest
observation date; [F]: Additive hazards assumption with linear time trend and dummy variables
for underwriting date and age at underwriting, earliest observation date.

[A] [B] [C] [D] [E] [F]

1/14 × ∫ 14
0 β0(t)dt 0�0182 0�0189 0�4645 −0�0090 −0�0090 0�0061

Estimated hazard, μ̂(i)t 0�8966 0�8974 0�8804 0�2031 0�2031 0�1822
(0�0101) (0�0101) (0�0125) (0�0067) (0�0067) (0�0069)

Underwriting date, ln(1 + DOUi) 0�3048 0�3039 – 0�0001 0�0001 –
(0�0277) (0�0277) – (0�0002) (0�0002) –

Age at underwriting, ln(1 + AUi) 0�5880 0�5798 – 0�0016 0�0016 –
(0�0828) (0�0828) – (0�0001) (0�0001) –

Sex, SEi −0�0984 −0�0990 −0�0866 0�0042 0�0043 0�0049
(0�0196) (0�0196) (0�0202) (0�0007) (0�0007) (0�0007)

Smoker, SMi�1 0�3739 0�3733 0�3604 0�0298 0�0297 0�0268
(0�0429) (0�0429) (0�0432) (0�0026) (0�0026) (0�0026)

“Aggregate” smoking status, SMi�2 0�2117 0�2123 0�2213 0�0116 0�0116 0�0105
(0�0551) (0�0551) (0�0552) (0�0025) (0�0025) (0�0025)

Settled-and-Observed, SaOi −0�5994 −0�3300 −0�4650 −0�0113 −0�0143 −0�0101
(0�1189) (0�0419) (0�0643) (0�0016) (0�0016) (0�0012)

Settled-and-Observed × trend, 0�3993 0�2127 0�0063
SaOi × ln(1 + t) (0�1691) (0�0361) (0�0011)

Settled-and-Observed × quadratic trend, −0�0608
SaOi × ln2(1 + t) (0�0567)

Settled-and-Observed × trend, 0�0411 0�0018 0�0014
SaOi × t (0�0071) (0�0009) (0�0003)

Settled-and-Observed × quadratic trend, −4�1 × 10−5

SaOi × t2 (0�0001)

Log-likelihood value −134,011�87 −134,015�18 −133,987�62 −74,322�44 −74,357�20 –

Tables A.3 and A.4 present additional results on the economic impact from Sec-
tion 5.1 of the main text. In particular, we show results for representative US male and
female policyholders under various model specification, using the approximate infla-
tion formulae as derived in equations (A.6) and (A.8) in Appendix A.3. Among all cases,
we estimate LE increases from roughly 1�8% to 13�9% for policyholders who choose to
settle their policy. The difference in value of the insurance policy is roughly between
−5�2% to −38�2%. We note that the differences are overall more pronounced under the
time-constant trend assumption.

Appendix C: Monte Carlo experiment on settlement process

To implement a Monte Carlo version of the thought experiment on the winner’s curse
in Section 5.2, part (iii) of the main text, we first run a least-square regression of the
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Figure A.1. Survival regression parameter estimations (left panels: Proportional; right pan-
els: Additive) of dummy variables for age at underwriting (top panels) and underwriting date
(bottom panels), with point-wise 95% confidence intervals (dashed curves); earliest observation
date.

logarithm of the mortality multipliers on the observable characteristics (excluding the
multipliers themselves and the settlement-related variables). We also include significant
interactions of the terms so that we have 41 covariates in total. Based on the regression
model, we then derive projected life expectancies as well as the standard deviation of
the error term. The projected life expectancies will then be used as the benchmark of
the assessment in the Monte Carlo experiment, that is, we assume these present the
true life expectancies.

Now, following the logic from Section 5.2, assume that a fraction of all cases enter
into life settlement transactions and the brokers commissioned with the sale “cherry-
pick” among the available LEs (multiplier estimates). More precisely, assume that for
these transactions, several LEs from various LE providers will be obtained but only the
shortest LE (highest multiplier) is submitted. Alternatively, we may assume that there
are several offers from various LS companies that base their pricing on different mortal-
ity multipliers, and the one with the highest bidding price (corresponding to the highest
multiplier estimate) will make the trade. Importantly, while in the context of this exper-
iment we assume the policyholder does not have private information on her survival
prospects, note that there still exists an informational asymmetry—the broker and/or
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Table A.3. Comparisons of average life expectancies as well as net policy values for a standard
whole life insurance purchased 10 years ago, between population-level and settled US male pol-
icyholders; various model specifications.

Proportion of closed policies (p)

24�5% 30% 40% 50% 60% 70%

Age 70 (nonadjusted LE 13�93, value 0�2092)
Additive hazards; time-weakening effect

Difference in LE (%) 3�16 3�42 4�00 4�82 6�06 8�16
Difference in value (%) −10�37 −11�20 −13�11 −15�80 −19�87 −26�76

Additive hazards; time-constant effect
Difference in LE (%) 4�79 5�18 6�08 7�36 9�32 12�70
Difference in value (%) −13�95 −15�08 −17�69 −21�39 −27�05 −36�78

Age 75 (nonadjusted LE 10�48, value 0�2520)
Additive hazards; time-weakening effect

Difference in LE (%) 3�03 3�27 3�83 4�61 5�80 7�81
Difference in value (%) −7�64 −8�25 −9�65 −11�62 −14�62 −19�69

Additive hazards; time-constant effect
Difference in LE (%) 3�80 4�11 4�82 5�82 7�35 9�97
Difference in value (%) −8�77 −9�48 −11�11 −13�42 −16�93 −22�93

Age 80 (nonadjusted LE 7�50, value 0�3024)
Additive hazards; time-weakening effect

Difference in LE (%) 2�83 3�06 3�58 4�31 5�43 7�31
Difference in value (%) −5�38 −5�81 −6�79 −8�18 −10�29 −13�85

Additive hazards; time-constant effect
Difference in LE (%) 2�91 3�15 3�68 4�44 5�60 7�56
Difference in value (%) −5�20 −5�62 −6�58 −7�94 −9�99 −13�49

policyholder will have more information than the winning LS company—but this asym-
metry emerges in the transaction process.

Assume that each LE provider’s estimate is based on the same projected mortality
multiplier plus a varying error term (with mean of zero), according to our regression es-
timates. For simplicity, we assume that the submitted (highest) multiplier corresponds
to the 75th percentile. Based on this logic, closed cases are systematically assessed with
shorter LEs, whereas the remaining cases are not. We use the resulting multipliers to
generate a hypothetical set of forecasts μ̂(i)t , i= 1� � � � � n, where we use the skewed (75th
percentile) multiplier for the (randomly sampled) closed cases and the projected (me-
dian) multiplier for the remaining cases. Based on the simulated sample, we derive non-
parametric estimators similarly as in Section 4.

Figure A.2 presents the results for five different simulated data sets, where as for
our actual dataset we assume 13,221 out of the 53,947 policyholders are Settled-and-
Observed (Panels (a) and (b) are also shown as Panels (o) and (p) of Figure 3 in the main
text). While the shapes and magnitudes differ between the simulated data sets, we ob-
serve that the multiplicative excess hazard roughly evolves according to a straight line
below one, whereas the additive excess hazard diverges. This is consistent with the as-



18 Bauer, Russ, and Zhu Supplementary Material

Table A.4. Comparisons of average life expectancies as well as net policy values for a standard
whole life insurance purchased 10 years ago, between population-level and settled US female
policyholders; various model specifications.

Proportion of closed policies (p)

24�5% 30% 40% 50% 60% 70%

Age 70 (nonadjusted LE 15�97, value 0�2181)
Proportional hazards; time-weakening effect

Difference in LE (%) 1�76 1�85 2�06 2�32 2�66 3�12
Difference in value (%) −5�50 −5�80 −6�44 −7�26 −8�32 −9�77

Proportional hazards; time-constant effect
Difference in LE (%) 4�52 4�85 5�58 6�59 8�03 10�27
Difference in value (%) −11�38 −12�20 −14�04 −16�54 −20�11 −25�65

Additive hazards; time-weakening effect
Difference in LE (%) 3�21 3�47 4�06 4�90 6�16 8�30
Difference in value (%) −10�10 −10�91 −12�77 −15�39 −19�35 −26�07

Additive hazards; time-constant effect
Difference in LE (%) 5�21 5�64 6�62 8�02 10�16 13�87
Difference in value (%) −14�44 −15�62 −18�33 −22�18 −28�07 −38�21

Age 75 (nonadjusted LE 12�25, value 0�2645)
Proportional hazards; time-weakening effect

Difference in LE (%) 2�71 2�86 3�18 3�59 4�12 4�84
Difference in value (%) −6�47 −6�83 −7�59 −8�56 −9�82 −11�54

Proportional hazards; time-constant effect
Difference in LE (%) 5�06 5�43 6�25 7�38 9�00 11�52
Difference in value (%) −10�32 −11�06 −12�74 −15�01 −18�27 −23�34

Additive hazards; time-weakening effect
Difference in LE (%) 3�10 3�35 3�92 4�72 5�94 8�00
Difference in value (%) −7�43 −8�03 −9�39 −11�32 −14�23 −19�17

Additive hazards; time-constant effect
Difference in LE (%) 4�17 4�50 5�28 6�39 8�07 10�96
Difference in value (%) −9�10 −9�83 −11�52 −13�92 −17�58 −23�84

Age 80 (nonadjusted LE 8�90, value 0�3205)
Proportional hazards; time-weakening effect

Difference in LE (%) 4�29 4�53 5�04 5�69 6�54 7�71
Difference in value (%) −7�61 −8�03 −8�93 −10�08 −11�57 −13�63

Proportional hazards; time-constant effect
Difference in LE (%) 5�62 6�03 6�96 8�21 10�01 12�83
Difference in value (%) −9�00 −9�66 −11�12 −13�12 −15�98 −20�43

Additive hazards; time-weakening effect
Difference in LE (%) 2�93 3�16 3�70 4�46 5�61 7�55
Difference in value (%) −5�22 −5�63 −6�59 −7�94 −9�98 −13�44

Additive hazards; time-constant effect
Difference in LE (%) 3�20 3�45 4�04 4�88 6�15 8�32
Difference in value (%) −5�34 −5�77 −6�76 −8�15 −10�27 −13�88
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Figure A.2. Non-parametric estimates of excess hazard in Monte-Carlo experiment of settle-
ment process.
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Table A.5. Survival regression results for the five Monte-Carlo simulated datasets.

Simulation

#1 #2 #3 #4 #5

Proportional hazards specification
Settled-and-Observed, SaOi −0�3218 −0�2568 −0�2890 −0�4372 −0�3896

(0�0596) (0�0587) (0�0589) (0�0599) (0�0598)

Settled-and-Observed × trend, SaOi × ln(1 + t) −0�0133 −0�0499 −0�0358 0�0204 0�0181
(0�0347) (0�0342) (0�0343) (0�0347) (0�0347)

Additive hazards specification
Settled-and-Observed, SaOi −0�0009 0�0001 0�0001 −0�0029 −0�0023

(0�0012) (0�0012) (0�0012) (0�0012) (0�0012)

Settled-and-Observed × trend, SaOi × t −0�0009 −0�0010 −0�0012 −0�0008 −0�0007
(0�0003) (0�0003) (0�0003) (0�0003) (0�0003)

sertions in Section 5.2. While it is possible that there are systematic differences in the
underwriting process between the LE providers, it is difficult to construct a situation
that yields the observed receding patterns from Section 4 based on this selection pro-
cess.

Table A.5 confirms the nonparametric findings by presenting corresponding survival
regression results based on the same five simulated datasets, using both proportional
and additive specifications with time trend. For simplicity, we only show regressed co-
efficients for settlement-related covariates. We observe from the table consistent results
across all simulation trials. In particular, for the proportional specification, the inter-
cept of the trend starts at significantly negative values, however, the slope of the trend
is insignificant and very close to zero, suggesting a persistent impact of settling on sur-
vival prospects. For the additive specification, the slope of the trend is no longer positive
but significantly negative, which is again necessary to sustain the constant proportional
trend.

References

Aalen, O., Ø. Borgan, and H. K. Gjessing (2008), Survival and Event History Analysis:
A Process Point of View. Series Statistics for Biology and Health. Springer, New York, NY.
[13]

Andersen, P. K., and R. D. Gill (1982), “Cox’s regression model for counting processes:
A large sample study.” The Annals of Statistics, 10, 1100–1120. [7]

Andersen, P. K., and M. Vaeth (1989), “Simple parametric and nonparametric models for
excess and relative mortality.” Biometrics, 45, 523–535. [10]

Cohen, A. and P. Siegelman (2010), “Testing for adverse selection in insurance markets.”
Journal of Risk and Insurance, 77, 39–84. [13]

Cox, D. R. (1975), “Partial likelihood.” Biometrika, 62, 269–276. [7]

http://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/AALENETAL08&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/ANDERSONGILL&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/ANDERSONVAETH&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/COHENSIEGELMAN&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/COX2&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/AALENETAL08&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/ANDERSONGILL&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/ANDERSONVAETH&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/COHENSIEGELMAN&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W


Supplementary Material Secondary insurance markets 21

Fischer, S. (1973), “A life cycle model of life insurance purchases.” International Eco-
nomic Review, 14, 132–152. [2]

Lin, D. and L.-J. Wei (1989), “The robust inference for the Cox proportional hazards
model.” Journal of the American Statistical Association, 84, 1074–1078. [8]

Lin, D., L.-J. Wei, I. Yang, and Z. Ying (2000), “Semiparametric regression for the mean
and rate functions of recurrent events.” Journal of the Royal Statistical Society: Series B,
62, 711–730. [8]

Lin, D. and Z. Ying (1994), “Semiparametric analysis of the additive risk model.”
Biometrika, 81, 61–71. [8, 9, 13]

Muller, H.-G. and J.-L. Wang (1994), “Hazard rate estimation under random censoring
with varying kernels and bandwidths.” Biometrics, 50, 61–76. [11]

Schnaubel, D. E., and G. Wei (2007), “Fitting semiparametric additive hazards models
using standard statistical software.” Biometrical Journal, 49, 719–730. [8]

Co-editor Peter Arcidiacono handled this manuscript.

Manuscript received 16 April, 2019; final version accepted 19 December, 2019; available on-
line 24 January, 2020.

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/FISCHER&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/LINWEI&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/LINETAL&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/LINYING&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/MULLERWANG&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/SCHNAUBELWEI&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/FISCHER&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/LINWEI&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/LINETAL&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/LINETAL&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/LINYING&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/MULLERWANG&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/SCHNAUBELWEI&rfe_id=urn:sici%2F1759-7323%282020%2911%3A3%2B%3C1%3ASTAIIS%3E2.0.CO%3B2-W

	Appendix A: Technical appendix
	Expected utility version of the model from Section 2.2
	Estimation approach for the proportional hazards model
	Impact of the mixed nature of the remaining subsample
	Proportional hazards model
	Additive hazards model

	Development of the nonparametric estimators
	A version of the model from Section 2 with price uncertainty

	Appendix B: Supplemental results
	Additive model speciﬁcation
	Additional regression results

	Appendix C: Monte Carlo experiment on settlement process
	References

