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This supplemental appendix gives proofs for the theorems in the main text. All
notation is as defined in the main text unless noted otherwise.

APPENDIX A: ADDITIONAL LEMMAS AND THEOREMS

In this appendix, we state a number of preliminary results that will be used in the proofs
of the four theorems in the main text. Detailed proofs of the results listed below may be
found in Appendix C below. The proofs of the main results are given in Appendix B.

The proof of Theorem 4.1 uses Lemmas A.1 and A.2 below. Theorems 5.1 and 5.2
use Lemmas A.3-A.12, A.14, A.15, Theorem A.2, and Lemmas A.16-A.18. Theorem 5.3
uses Lemmas A.9-A.12, A.14, Theorem A.3, and Lemmas A.24-A.28. Theorem 5.4 uses
Lemmas A.9-A.14, Theorem A.1, and Lemmas A.19-A.23.

DEeriNITION A.1 (Sobolev Norm). The norm that we use for functions g:Z C RL SR
that are at least j times continuously differentiable is the Sobolev norm

|glj= sup

g
pruet
zeZ,\|<jl 97

LEMMA A.1. Let f: X+ R, with X = [x;, x,] a compact subset of R, be a twice continu-
ously differentiable function, and let g:R +— R satisfy a Lipschitz condition, |g(x + y) —
gx)| <c-|yl|. Then

7 )
mf(x) el

‘f (W) - (f (8(0)) + %f (8(®) - (g — g(O)))‘ < % -sup

xeX
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LEMMA A.2. Let X be areal-valued random variable with support X =[x, x,], with den-
sity fx(x) > 0 for all x € X, and let h:X — R be a continuous function. Suppose that
E[lh(X) - X]is finite. Then

Cov(h(X), X) = E[%h(X) : v(X)},

where

_ Fx(x)-(I-Fx(x)

) Fr(x)

(E[X|X > x] — E[X|X < x])
and Fx (x) is the cumulative distribution function of X .

For completeness, we state a couple of results from Athey and Imbens (2006; Al here-
after).

LEMmA A.3 (LemmaA.2 in Al). SupposeY is a real-valued, continuously distributed ran-
dom variable with compact support Y = [y, y,], with the probability density function
fy (y) continuous, bounded, and bounded away from zero, on Y. Then, for any 6 < 1/2,

supN® - |Fy (y) — Fy ()| 2> 0.
yeY

LEMMA A.4 (LemmaA.3in Al). SupposeY is a real-valued, continuously distributed ran-
dom variable with compact support Y = [y, y,], with the probability density function
fy (y) continuous, bounded, and bounded away from zero, on Y. Then, for any 6 < 1/2,

sup N°. ‘ﬁ;l(q) - F;l(q)] 50.
q<l[0,1]

LEMmA A.5 (Lemma A.5 in Al). Suppose Y is a real-valued random variable with com-
pact supportY = [y, y,1, and suppose that the cumulative distribution function Fy (y) is
twice continuously differentiable on Y, with its first derivative fy(y) = %( y) bounded
away from zero on Y. Then, for 0 < <3/4 and 6 > max(2n — 1, n/2),

sup N |Fy(y+x) — Fy(y) — (Fy (y + x) — Fy (»))| > 0.
yeY,x<N-9 x+yeY

LEMMA A.6 (Lemma A.6 in Al). Suppose Y is a real-valued random variable with com-
pact support Y = [y, y,], and suppose that the cumulative distribution function Fy (y) is
twice continuously differentiable on Y, with its first derivative fy(y) = %(y) bounded
away from zeroon Y. Then, forall0 <n <5/7,

sup N7-|Fo1(q) — Fy'(q) + (Fy (Fy (@) — q)| 0.

g€l0,1] fr(Fy'(9)
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LemMmA A.7. Suppose X and Y are real-valued, continuously distributed, random vari-
ables with compact support Y = [y;, y,] and X = [x;, x,,], with the probability density
functions fy(y) and fx(x) continuous, bounded, and bounded away from zero, on Y
and X. Then, forany § < 1/2,

supN° - | Py (Bx (x)) — Fy ! (Fx (x))| =5 0.

xeX

LEMMA A.8. Suppose Y is a real-valued random variable with compact support Y =
[y, yul, and the cumulative distribution function Fy(y) is twice continuously differen-
tiable on Y, with its first derivative fy (y) = % (y) bounded away from zero on Y. Then,
for0 <n <3/4and é > max(2n — 1, n/2),

sup N |Fy(y+x) — By () — fr(») - x| 2> 0.
yeY,x<N=8 x+yeY

The next three lemmas are given without proof. Proofs can be found in Imbens and
Ridder (2009). The first gives a bound on the bias of the NIP estimator.

Lemma A.9 (Bias). If for m =1, 2 Assumptions 4.1-5.1 hold, and g >2s — 1 andr > s —1,
then

sup|]E[I:lm,nip,s(Z)] - hm(z)| = O(bs)-

Z€ZL

Note that by matching the order of the kernel and the degree of the polynomial in
the NIP estimator, we obtain the same reduction in the bias on the full support as on the
internal region, that is, the NIP estimator has a bias that is of the same order as that of the
NW estimator on the internal region. The variance is bounded in the following lemma.
We only use the following two results for the case with L = 2, but for convenience we
give the general results.

Lemma A.10 (Variance). IfAssumptions 4.1-5.1 holdand q>s—1,r>s—1+ L, then

N A log N 12
ilelghm,nip,s(z) - E[hm,nip,s(z)” = Op<<ka/> )

This is the same bound as for the NW estimator on the internal set.
The two lemmas imply a uniform rate for the NIP estimator.

LemMA A.11 (Uniform Convergence). If Assumptions 4.1-5.1 hold and q > 2s — 1, r >
s—1+4+ 1L, then

o log N 172
i:}z)|hm,nip,s(z) - hm(z)| = Op<(N—b]l\‘]> + b%)
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LEMMA A.12. Iffz(z) is a nonparametric estimator of h(z), then

inf|h(2)| = inf | h(2) +0p(igg}iz(z) —h(z)).

Therefore, if sup,., |/:(z) — h(z)| = 0,(1) and inf,cz |h(z)| > 0, then inf,cz |(z)| con-
verges in probability to a positive number. This lemma is useful if h(z) appears in the
denominator. In this paper, z = (w, x) or z = w.

LEMMA A.13. Suppose Assumptions 4.1-5.2 hold. Moreover, suppose that in these as-
sumptions q >2s — 1, r > s. Then

) B (V)"
suplincn) —men| =0y (50 )+ 5 )

LEMMA A.14. Suppose Assumptions 4.1-5.2 hold. Moreover, suppose that g > 2s + 1 and
r>s-+3. Then

In(N 1/2
M sup |§<w,x>—g<w,x>|=op((&) +b§v),

weW,xeX N - bjzv

R 12
1
(ii) sup a—g(w,x)—ﬁ—g(w,x) =0, LN) +by ),
weW,xeX Jw Jw N - b;lv
and
25 2 1 172
(i) sup | S, x) — & (w, x) 0,,(<LN£> +b§\,>.
weW,xeX Jw &w N‘bN

The next lemma shows that we can separate out the uncertainty in BP2™ into
five components the uncertainty from estimating g(-), the uncertainty from estimat-
ing F 1(,), the uncertainty from estimating Fy(-), the uncertainty from averaging
g(Fy,) (F x(X1)), X;) over the sample, and a remainder term that is 0 ,(N ~1/2). As defined
in Section 6,

am L.
B =% Zg(le (Fx (X)), Xi),
e
By =5 2o 8(Fy (Fx(X0), Xi),

N
am 1 — ~
BY™ ==Y a(Fy (Fx(X0), X)),

and
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LemMA A.15. Suppose Assumptions 4.1,5.1, and 5.2 hold with q > 2s+ 1, r > s+ 3, and
0<6<1/6.Then

épam _ Bpam — (égam _ gpam) + (BFV)Vam _ gpam) + (é?{am _ gpam)

+ (gpam _ Bpam) + 0p (N—1/2)'

(A.1)

The next two results are special cases of theorems in Imbens and Ridder (2009; IR
hereafter). The first one refers to the full mean case, and focuses on the case where we
take full means of regression functions and their first derivatives. The second result fo-
cuses on partial means of regression functions. The results in IR allow for more general
dependence on higher order derivatives, even in the partial mean case. Here we also re-
strict the analysis to the case where the regressors are the pair (W}, X;). We also state the
conditions that IR invoke.

Let Z; = (W;, X;), with X; e XCRLX, W, e W RLW, Z; e W x X c RLz, with L, =
LX + Lw. As before, h(Z) = (hl(z), hz(Z))/, with hl(Z) = fz(Z), and hz(z) = IE[Y|Z =2z]-
fz(2).Let n:RX > R, tx: X+ W, and w:X > R, and define Y = (Y;; Y;2), with Y;; = 1
and Y;, = Y;. We are interested in full means (possibly depending on derivatives) of the
regression function,

oM = E[w(Z)n(hM(2))], (A.2)
or partial means,
oP™ =E[w (X)n(h(X, 1(X)))]. (A3)

Note that in the full mean case, w:Z — R, and in the partial mean case, o : X  R: the
weight function depends only on the covariates that are being averaged over. In the full
mean example, 4" denotes the vector with elements including all derivatives 4*) for
< A. The estimators we focus on are

N N
- 1 A A 1 ~
o™ = Nzw(zz’)n(hgﬁ))s(Zi)) and 6P = NZw(Xi)n(hnip,s(t(Xi)aXi))'
i=1 i=1
It will also be useful to define the averages over the true regression functions and their
derivatives,

N N
—fm 1 —pm 1
0" = Zl:w(Zi)n(h[)‘](Zi)) and 0" = ~ 21: o(Xnn(h(t(X), X))
1= 1=
AssuMPTION A.1 (Distribution).
(i) The random vectors (Y1, Z1), (Y2, Z3), ..., are independent and identically dis-

tributed.
(ii) The supportof Z isZ C RE, Z= Q% _\[zputs zmu), 211 < 2 foralll =1, ..., L.
(iii) We havesup, ,E[|Y|P|Z = z] < oo.
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(iv) The function g(z) = E[Y|Z = z] is q times continuously differentiable on the inte-
rior of Z with the qth derivative bounded.

(v) The density fz(z) is bounded and bounded away from zero on 7, and is q times
continuously differentiable on the interior of Z with the qth derivative bounded.

AssuMPTION A.2 (Kernel).

(i) We have K :RE — R, with K (u) =[]k, K(u).
(ii) WehaveK(u) =0 foru ¢ U, withU =[-1, 11%, Uy =[-1, 11'W,and Uy = [—1, 115X

(iii) The kernel K is r times continuously differentiable, with the rth derivative
bounded on the interior of U.

(iv) The kernel K is a kernel of order s, so that [; K(u)du =1 and [ u'K (u)du =0 for
all A such that 0 < |A| < s for some s > 1.

(v) The kernel K is a kernel of derivative order d.
ASSUMPTION A.3. The bandwidth by = N~° for some & > 0.

ASSUMPTION A.4 (Smoothness of n and w).

(i) Thefunctionnist times continuously differentiable with its tth derivative bounded.

(i) The function w is t times differentiable on X with bounded tth derivative, and
‘g%,ﬁ" (2) is zero on the boundary of Z.
AssumPTION A.5 (Smoothness of t). The function t: X — W is twice continuously differ-
entiable on X with its first derivative positive, bounded, and bounded away from zero.

THEOREM A.1 (Generalized Full Mean and Average Derivative (Theorem 4.2, IR)). If As-
sumptions A.1,A2, A3, and A4 hold withq> |A|+2s— 1, r>|A|+s—1+ L, t>|A| +5,
p=3,d>max{A, ..., A} +s—Lallu<MA0<|ul <|A|—1,and

4
2
! 8 < min P !
— < s ’
2s 2L +4max{1, |A|}" 2L +4|A|

then 0gy, is asymptotically linear with

2

1

VN3 — gim) =
VN

Z (0 (Zon(A™(Z)) - E[w(Znn(A™(Z))])

i=1

Z(Z( 1)"“2 (@) (X) Vi — [(K>(X>Ym]))

K<A

+ Op(1)7
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with
" (2) = fx(2)w(2) on (h™M(2)) and
« anl ()
() _ on (Al
@, (2) _fX(Z)w(Z)o"h;K)(Z) (hM(2)),

andY = (Yy Yp), with Yy =1and Y =Y;.

The second theorem from IR gives the asymptotic properties of the generalized par-
tial mean (GPM) estimators

THEOREM A.2 (Generalized Partial Mean (Theorem 4.3, IR)). If Assumptions A.1, A.2,
A3,A4,and A5 holdwithq>2s—1,r>s—1+L,t>s,p>4,d>s—1,and

4

! 6 < min 2_; !
2s 2L +4° 2L |’

then 6P™ is asymptotically linear with

VN (6P™ — gPm)

_ 1
=N - (6" — 6P™) 4
( ) bV N
N 2
~ W; — t(X; 1%
>3 <am(Xi)/Yim/ K<l—(l)+—l(Xi)~uz,M2>duz
i=1 m=1 Uz by Ix

— E[am(X)/f’m/ K(m + it(X) U, u2> du2j|> +o,(1),
U, Jx

by
with
P
a1 (x) = f7(t(x), x)w(x)&—}zll(h(t(x), x)) and
on
a(x) = fz(t(x), x)w(X)(?—hz(h(t(X), x)).
Moreover,
VN - (67" — orm) d 0\ (Vi 0
~ p— HN b b
st ) )2V () (5 2))
with

Vi =E[(0(X)n(h(1(X), X)) — 0pm)’]
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and

Vy= Z Z / Fommy (%5 (X)) G (X) Gty (X)

m=1m'=1
It z
X / <f K(ul, —(X)u; + u2> du1> duy fx (x, 1(x)) dxy,
U, \JU; Jx
WIth Wy (x) = E[Yim Yinr | X = x]form,m' =1,2.

LEMMA A.16. Suppose Assumptions4.1,5.1,and 5.2 hold, withq >2s—1,r>s+1, p >4,
d>s—1,and 1/(2s) <& < 1/8. Then

\/— (.Bpam gpam)

1 N
= Yi—g(W;, Xi)

JNby 1.221( § )

. / K(%—F;V1<Fx<x,-)>+ fxXo u2> diy
by fw (Fy' (Fx (X))

(R |

+ (Wi, Xi) — g(Fy (Fx (X)), Xi
Ty 2o (0 X (P (Ex ). 1)

. / K(%—F;V1<FX<X,-)> frXo u2> du,
s by fw (Fy! (Fx (X))

B[ (s X) — g(Fy (Fx (X)), X))

- -1
[ (B 0, )]
0 by fw (Fy! (Fx (X))

+op(1)
and

N N(o, E[UZ(F;Vl (Fx (X)), X)

2
f </ K(MH- ]j;l((X) 'Mz,uz) duz) duy
up \Jup fW(FW (Fx(X)))

- fwix (Fy! (FX(X))IX)D.
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LemmA A.17. Suppose Assumptions 4.1, 5.1, and 5.2 hold, with q > 2. Then
B\l;;m —Pam Z wpam(w) + Op(N_l/z).
LEMMmA A.18. Suppose Assumptions 4.1, 5.1, and 5.2 hold, with q > 2. Then
am am —-1/2
pEY™ — gham — Nzl/fp (X)) +o0,(N712).
Define

o 1 XL a8
B = 5 2SS WL X0y - W) - (Xi = (W),

i=1

A

N

1 d
le _ _ 98w x. N (X — (T,
m—N;:&w(Wz,X[) dWy) - (X; — m(Wp)),

and
1 Y g
Sle _ w: Y- d(W) - - W:
g —N?:l é’w( i Xi) - d(W) (Xl m( l))

Lemma A.19. Suppose Assumptions 4.1, 5.1, and 5.2 hold. Moreover, suppose that the
estimators for g(w, x) and m(w), and g(w, x) and m(w), respectively, satisfy

g J, _
%(w,x)—(?—(w,x) =0,(N™") and

sup |A(w) — m(w)| = 0,(N")

weW

forsome n > 1/4. Then

LeMMA A.20. Suppose Assumptions 4.1,5.1, and 5.2 hold, with q > 2s,r >s, p>3,d > s,
and 1/(2s) < & < 1/12. Then

-g°= Z¢ (Yi, Wi, Xi) +0,(N712), (A.5)
where
1 Ifw.x(W, X)
Y W, X) = 2 ST (Y — g(W, X))d(W)(X — m(W))
B om(W)

TG dW)(Y —g(W, X))

ad
+ ﬁ(W)(X —m(W))(Y — g(W, X)).
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LEMMA A.21. Suppose Assumptions 4.1-5.2 hold, withqg>2s—1,r>s, p>3,d>s—1,
and

1 1 2
2s 3 3p
Then
sup (Fw (w) — fw ()| = 0, (N1/2).
weW| fir (w)

LEMMA A.22. Let h(w) = (hi(w), hy(w)) = (E[X|W = wlfw (w), fw(w)) and suppose
Assumptions 4.1-5.2 hold, withq>2s—1,r>s, p>3,d>s—1,and

1 1 2
50373y
Then
sup (fu(w) — h1(w))(f12(w) — hy(w))| = 0,(N~1/2).
wew! hiz(w)

LEMMA A.23. Suppose Assumptions 4.1-5.2 hold, withq>2s—1,r>s, p >3, and

1 1
2—S <d< g.
Then
X 1 &
Bl — 8= 5 D_Elew (W X)lWi] - dWy) - (Xi = m(W) +0p(N717). (A.6)

i=1

Before the next theorem, we need some additional definitions. We split Z; into
(Z},,Z},), with the dimension of Z;; equal to Lz; and the dimension of Z;; equal to
L5, sothat L =Lz + Lz,. We are interested in the distribution of

N N
V:fN-(ézz (2112 Z20)) — zz h<z1,,z2k>) an
—1 k=1 k=1

We show that this is, to first order, equivalent to a single normalized sum.

THEOREM A.3. Suppose that Assumptions A.1-A.4 hold, with g >2s —1,r>s—1+1L,
1/(2s) <8 <1/(2L), and t > 2. Then

fz{ (h(ZD) Yif2,(Z1i) f2,(Zai)
(A.8)
_EZ|: ( (Z)) YfZ](th)sz(ZZl ]} +0p(1)-
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(To be clear here, we index the expectation by the random variable that the expectation is
taken over, in this case Z.)

Before stating some additional lemmas that will be used for proving Theorem 5.3,
we need some additional definitions. Define

gom — d)c(tb Y Ew W), 7N (Fx (X))); p)
g( l7
221,21 D (@ E (i) e (@ YFx (X))
¢>c<<b Y Fw (W), ®F 1(FX(X])) p)
gWi, X
B 221,21 D @ Fyy (W) e (e (X))
qsc(cb Y Fw Wh)), .1 (Fx (X))); p)
g( 17
i Nz;,zl D e @ F (W) e (@2 (P (X))
Zzg( ¢>c<<b Y(Fw (Wi)), 7 (Fx (X))); p)
TN DX BT (F (W) oD TFx (X))

LemMmA A.24. Suppose Assumptions 4.1-5.2 hold with q > 2s+2,r > s+ 3, and 1/(2s) <
8 <1/4. Then

B™(p,0) — B (p, 0) = (B™ — ™) + (B — ™) + (BF — ™)
+ (gcm _ ch(p,O)) + OP(N_I/Z).

LEMMA A.25. Suppose Assumptions 4.1-5.2 hold. Then
LN
3 = Z Y. W X -1/2
B;m_gcm = N c lp;m i» i, i) OP(N / )7

where

fww) - fx(x)
fwx(w, x)

LEMMA A.26. Suppose Assumptions 4.1-5.2 hold. Then

P (y, w, x) = (v — g(w, x)) o (w, x).

N
. B 1 _
BW—gcm:NE :lpg;“ Yi, Wi, Xi) + 0, (N713),

where
Yy (v, w, x)_//g(s Hew (s, t)(l(w<S) FW(S))fW(S)fX(t)del

LEMMA A.27. Suppose Assumptions 4.1-5.2 hold. Then

N
A _ 1 ~
B =8 =1 D UK (Yi Wi, Xi) + 0, (NT12),
i=1
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where
Py, w, x) = ffg(s, Dex (s, 1)(1(x < 1) — Fx (1)) fw (s) fx () dsdz.

LEMMA A.28. Suppose Assumptions 4.1-5.2 hold. Then
LN
g = B(p, 0) = = D W™ (Yi, Wi, Xi) + 0, (N71?),
N

where
™ (w, x) = (E[gW,x) - 0o (W, x)] — B (p,0))

+ (E[g(w, X) - w(w, X)] — B™(p, 0)).

(A.9)

The following theorem is a simplifed version of the J/-statistics results in Lehmann
(1999).

THEOREM A.4 (V' -Statistics). Suppose Z1, ..., Zn are independent and identically dis-
tributed random vectors with dimension K, with support Z. c RK . Let ¢ : ZX x 7ZX - R be
a real-valued function. Define

0=E[¢(Z1,22)], 1(2)=E[¥(z,2)],  v22) =E[¢(Z,2)],
0% = Cov(¥(Z1, Z2), W(Z1, Z3)) + Cov((Za, Z1), (Z1, Z3))
+ Cov(Y(Z1, Z2), ¥(Z3, Z1)) + Cov(¥(Zy, Z1), ¥(Z3, Z1)),

and
1 N N
V=522 0 Zi 2,
i=1 j=1
Then if0 < 0% < oo,
1 N
V= (120 = 0) + (2(Z0) = 6)} + 0, (N'72)

N 4
i=1

and

YN -V = 0) -5 (0, 0?).

APPENDIX B: PROOFS OF THEOREMS STATED IN THE MAIN TEXT

In this appendix, we provide proofs of the results in the main text. We use the lemmas
and theorems stated in Appendix A throughout. Some details that are omitted here may
be found in Appendix C.
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PRrROOF OF THEOREM 4.1. Define

Vyii=A-Xi-dW)+ W,

h(A,a)=pr(Vy <a)=Fy,(a), and k(w,x,A)= h()\, A-x-d(w)+ w).
First we focus on

BV () =E[g(Fy (Fr,(Va.0), X)] =E[g(Fy,! (k(W;, Xi, 1), Xi)].

We then prove four results. First, we show that for small A, ,Blr"’()\) and Blr()\) are close
or

BV (A) = BTN + o(M). (B.1)
Second, we show that

BTV(L) =E[g(W, X)]
(B.2)

| XA — k(W X
+E[%(W’X’)fW(VIG)(k(m’X”A) k(Wl,Xl,O))} +o(A).

Next we show that B!¢ has the two representations in Theorem 4.1. In particular, the third
Ic,v .
part of the proof shows that gl¢V = '937(0) satisfies

gl = E[j—i(%xn (X d(Wp) —E[X; - d<m>|m])]. (B.3)

Fourth, we show that 8%V satisfies

2
e = o0t X+ S5, x|, (B4

We start with the proof of (B.1). Define

uw, x, ) =A-x-dw) M 4+V1-A2.w and v(w,x,\)=A-x-d(w)+ w.

Then
sup  |u(w, x, ) —v(w, x, V)| = O()\Z).
weW, xeX
Define also
hy(A,a)=pr(Uy <a) and ky(w,x,A)=hy(A, u(w,x,A)).
Then

sup|hy (A, a) — h(A, a)| = 0()\2)
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and

sup |ky(w,x, \) — k(w, x, V)| = O(A?).
weW,xeX

Combined with the smoothness assumptions, this implies that

BSV(\) — BN = E[g(Fyt (k(Wi, X1, V), Xi)] — E[g(Fy (ku Wi, X1, 1), X1)]
=0(7\?).

This finishes the proof of (B.1).
Next, we prove (B.2). Let ¢; and c; satisfy

sup [k(w, x, A +7y) —k(w,x, )| <c-y

X,w,Y,A

and

2
sup (9—w2g(w,X)

weW,xeX

=0,

respectively. Then applying Lemma A.1 with f(a) = g(FI;,I(a), x) and A(A) = k(w, x, A),
we obtain

g(FI;) (k(w, x, V), x) — (g(le (k(w, x,0)), x)

J
@g(F;(k(w,x,O»,x)
fw (Fpt (k(w, x,0)))

< i’ =o(N).

(k(w,x, A) — k(w, x, 0)))‘

Since the bound does not depend on x and w, we can average over W and X, and it
follows that

E[g(F;,' (KW, X, ), X)] - E[g(W, X)]

J
fw (W)

(k(W, X, ) — W)} ‘ =o(N),

where we also use the fact that k(w, x, 0) = Fy(w). This finishes the proof of (B.2).
Now we prove (B.3). By definition,

h(A,a) =Pr(V) ;i <a)=Pr(V) ; <a,W; <wp) +Pr(V); < a, W; > wp)
=Pr(A- X; - d(Wp) + W; < a, W; < wp)
+Pr(A- X; - d(W;) + W; < a, W; = wp)
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=Pr(A- X; - (W; —wy) + W; < a, Wi < wy,)
+Pr(A- X; - (wy = W) + Wi < a, W; = wp)
. a+A-X;-w
=PrlW: < -
1'( ,_mm(u)m, 1+/\'Xi ))

a—/\-X,--wu>

P <W:<
* r(“”"— =TIoA X

For A sufficiently close to zero, we can write this as

A-X;-
h(A, a) = Lasw,, - Pr(Wi < wpm) + la<w,, -PI‘(VV,‘ = u)

1+A-X;

A X
+1a>wm.pr<wm<miu)

1-2-X;

a—i—)\-Xi-wl
1+ X;

a—)\~X,--wu
1-A-X;

a+Ar-X;-w
=tz E[pe(i = T )
)]

a—\A-X;-wy
a+A-z-w
= la<w, '/FW|X<7I‘Z)fX(Z)dZ

= ly<w,, - PI‘(VV,’ =<

+ 1a>wm : Pr(m =

+ Losw, - E[PI(VVi =

1—-2-X;
1+A-z2

a—A-z-wy
losw, - | F _—
+ lasw, / WX< -2

z)fX(z) dz.

Substituting a = A - x - d(w) + w, we get

Arx-dlw)+w+A-z-w
141z

k(w,x,A) = 1/\~x~d(w)+w<wm'/FWX< ’Z)fx(Z)dz

Ax-dw)+w—A-z-w
+ Ihx-dw)+wswpy, '/FW|X< 1—A-z ;

= 1/\~x~(w—w1)+w§wm lewm

./FW|X(/\.x.(w—wm)+w+/\.z.wl‘z)fx(z)dz

z)fx(z)dz

1+A-z

+ 1/\-x-(wu —w)+wwy, 1w>wm

Arx-(wy—w)+w+A-z-w
'fFWIX( ( 1+)/\~z I‘Z)fx(z)dz

—+ 1)\.x.(w_w1)+w>wm : 1w5wm
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Ax-(W—wp)+w—A-z-w
'/FWX< T - Z)fX(Z)dZ
+ 1)\~x~(wufw)+w>wm . 1w>wm
Ax-(wy—w+w—A-z-w
/FWX( “ -1 2 uz)fx(z)dz

= Lyy<wp (14 Axw; /wp) /(14Ax)

./FWX(/\.x.(w—wm)-i-w-l—/\.z.wl‘Z)fX(z)dZ

1+A-z2
Arx-(wy—w)+w+A-z-w
+ 1wm(1+/\xw1/wm)/(l+/\x)§w§wm
A-X- — —A-z-
L (RS R TRVNE
J— .Z

Acx-(wy—w)+w—A-z-w

+ lwzw, '/FWX( : -1z - Z)fX(Z)dZ-

The last equality uses the following four facts: (i) A - x - (w — wy) + w < w,, implies
W < Wy (14 Axwi/wp) /(1 4+ Ax) < wpy, (i) A - x - (wy, — w) + w < wy, implies w < wy, (1 —
AXWy /W) /(1= AX) < Wy, (i) A-x - (w—w;) +w > wy,, implies w > wy, (1+ Axw;/wy,) /(14
Ax),and (iv) A - x - (wy, — w) + w > wy, implies w > wy, (1 — Axwy,/wy,)/ (1 — Ax).

Now we will look at

Jg
Bl =, Wi Xi k(Wi, X, A
| X0 7 e )|
:v/x:‘u/;”“ &_( w, )ﬁk(w x, A) fw,x (w, x) dwdx.

Substituting the three terms of k(w, x, A) in here, we get

[ ( z,X)f ) k(Wz,X,,/\)]
Jg
Xu pwm(I+Axw /wm)/(1+Ax) —— (W, X)
TR
x; Jwy Jw (w)
A (w—w)+w+Ar-z-w (8-5)
.x. — . .
X /FWX< 1 ! l‘z>fx(z)dsz7X(w,x)dwdx
+ Az
Jd
Xu [Wm —g(UJ,X)
+ Jw
/ / 1 1 Jw (w)
X Wi (1+AxW /W) /(14 AX) (B.6)

Ax-(w—w)+w—A-z-wy
x | Fwix 1—A-z

z)fx(z) dzfiy x(w, x) dwdx
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Xu Wy &_g(w5 x)
s
x; Jwp fW(w)

Ax-(wy—w)+w—A-z-wy
x| Fwix 1—A-z

(B.7)
z>fX(z) dzfiy x(w, x) dwdx.

Next, we take the derivative with respect to A for each of these three terms and evaluate
that derivative at A = 0. For the first term, (B.5), this derivative consists of two terms: one
that corresponds to the derivative with respect to the A in the bounds of the integral, and
one that corresponds to the derivative with respect to A in the integrand. For the second
term, we only have the term that corresponds to the derivative with respect to the A in
the bounds of the integral, since the other term vanishes when we evaluate it at A = 0.
The third term, (B.7), only has A in the integrand. So

1
5E[d_(m,x>f (W)kw,Xi,A)}

A=0

|

d
= (w; — Wp) ~E[5g(wm,

+/~xu /wmi w x)#
Xy wy awg ’ fW(U))

X f ' fwixwl2)(x - (w—wp) +z-w; — z- w) fx(2) dzfw, x (w, x) dwdx
Xy

— (w1 = wp) ~1E[ig<wm, X)W = wm]
Jw

Xu wmi 1
+// 7w 5w

/ fW|X(w|Z)(x (wy—w)+z-w—=z- wu)fX(z)dszX(w x)dwdx

/ fwm —g(w, x)

/ fX‘W(z|w)(x dlw,x)—z-d(w, z)) dzfiw, x (w, x) dwdx

[ L

/ fxiw (zlw)(x - d(w, x) — z - d(w, 2)) dzfw, x (w, x) dw dx

/ fwu —g(w, x)

x/ fX‘W(z|w)(x d(w,x)—z-d(w,z))dsz’x(w,x)dwdx
x;
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Wy
[
x (Xi-d(w, X;) = E[X; - d(w, X)|W; = w]) fw, x (w, x) dwdx
—E[ (Wi, X0 - (Xi - d(W;, Xi) — E[X; - d<WL,X>|W])} BV,

This finishes the proof of (B.3).
Finally, we show (B.4) by showing the equality of

d
gl =E[£<Wi,xi> (X -dOW) —E[X; - d(WmWi])} (B.8)
and

2

[5(WI,X) Twax Vo Xi )} (B.9)

Define
b(w) = E[:—i(w, X;) - (Xi ~d(w) _]E[Xi ~d(w)|W; = w]))VV, _ wi|
= E[j—f}(w,Xi) ~d(w) - (X; — E[X;|W, = w])‘VVi — w:|,

so that BV = E[b(W)]. Apply Lemma A.2, with A(x) = j—f}(w, x) - d(w), to get

2
b(w) =E[&waxg(w,X)~8(w,X)},
with
8w, x) = d(w) - Fxyw(xlw) - (1 — Fxyw (x|w))
Fxw (x|w)
C(EBIXIX >x,W=w]-E[X|X <x, W =w]).
Thus

2

BY =E[b(W)] =E[ gW, X).- B(W,Xﬂ. 0

Jwaix

PrOOF OF THEOREM 5.1. We apply Lemmas A.15-A.18. The assumptions in the theorem
imply that the conditions for those lemmas are satisfied. O

The proof of Theorem 5.2 is essentially the same as that for Theorem 5.1 and is omit-
ted.

ProoOF OF THEOREM 5.3. We apply Lemmas A.24-A.28 to get an asymptotic linear rep-
resentation for 8™ (p, 7). The assumptions in the theorem imply that the conditions for
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the applications of these lemmas are satisfied. Therefore, by Lemma A.24, we have
B (p,0) = B (p, 0) + (Bg™ — ™) + (BF —2°™) + (BF" — &™)
+ (8 = BM(p, 0) + 0, (N7'2).

By Lemmas A.25-A.28, this is equal to

N

1
B (p, 0) + 7 D W™ (Vi Wiy Xi) + 47 (Yi, Wi, Xi)
i=1

+YSY, Wi, Xo) + (Y3, Wi, X))+ 0p (N12)

cm 1 —
=BT, 0+ EM, Wi, Xi) +0,(N7Y2),

with 1# M(y, w, x) givenin (5.42), zp M (y, w, x) given in (5.43), lp M (y, w, x) givenin (5.44),
1/;8‘“( ¥y, w, x) given in (5.41), and ¥ (y, w, x) given in (5.45). Then we have an asymptotic
linear representation for B™(p, 7):

B (p, ) =7-Y +(1—1)-B™(p,0)
=B (p, 7)) +7- (Y — B™(p, 1)) + (1 — 1) - (B™(p, 0) — B™(p, 0))

N
_ 1
1=
Since by the law of large numbers, Y — 8™ (p, 1) and DY, Wi, Xi))/N — E[y(Y;, W,
Xi)] =0, it follows that ™ (p, ) — B“™(p, 7). By the central limit theorem, the second
part of the theorem follows. O

ProoF oF THEOREM 5.4. The proof uses Lemmas A.13, A.14, A.19, A.20, and A.23.
By the conditions on ¢, r, 5, and 8, Lemma A.13 implies that for some 7 > 1/4,

sup |(w) — m(w)| = o0,(N~").

weW
Moreover, by the same conditions, Lemma A.14 implies that for some 1 > 1/4,

sup

g d
28 (w, x) = & (w, x)| = 0, (N7).
weW,xeX Jw Jw

Then the conditions for Lemma A.19 are satisfied, so we can write

\/N(BAlC _ Blc)

f Z —<W,,X> dWp) - (X — m(Wy)) — VN - B

Z (VK,X) d(W) - (X — m(W)))
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Z—(%X) d(W) - (X — m(W)))
+izﬁ—g<m,xi)-d<m)-(X—:%<Wi))
VN i=1 Jw

Z —%X) dW) - (X = mWp) + 0,(1).

By Lemma A.20,

1 &y
Nip Z 8 Wi, Xi) - d(Wp) - (Xi = m(Wy)
Z —8(Wi, Xi) - d(OWy) - (X; — m(Wy))

f Z W (Y5, Wi, Xi) + 0 (1),

where
1 Ifw,x (w, x)
Py, w, x) = — v oW (v — g(w, x))d(w)(x — m(w))
= IO ) (y — 8w, 1)) + —d(w) (x — m(w) (7 — g(w, )
W w)(y —g(w, x " (w)(x —m(w))(y — g(w, x)).
By Lemma A.23,
1 Qg
T Z =8 (Wi, Xi) - d(Wp) - in(Wy)
fZ—g(W,,)m d(Wp) - m(Wy)
f2¢‘°(Yl,m,Xi>+op<1>,
where

| |- (5= mew).

oW

Combining these results implies that

. 1 &
VN(B'* - B') = T D WYL W X)) + 0p(1),
i=1
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with

Jg(w, x)

Py, w, x) = < o

cd(w) - (x — m(w)) — BIC>

+ P, w, ) + Py, w, ).

Using the law of large numbers then implies the first result in the theorem, and using
the central limit theorem implies the second result in the theorem. O

APPENDIX C: PROOFS OF RESULTS LISTED IN APPENDIX A
In the following proofs, c is a generic constant.

Proor or LEMMA A.1. Because f(-) is twice continuously differentiable on X, a compact
subset of R, it follows that for all a, b € X, by a Taylor series expansion,

f 1 9*f

_ Py b-—ay+=-2Ley. (b - ay
fO) =@+ (@ (b=a)+ 5 —5(0) (b—a)

for some ¢ € X. Hence

flg) —( f(8(®) + i(g(0>) - (g(N) — g(0)
x

1 92
<5 sup| o3 ()

xeX

(8N — g(0)

By the Lipschitz condition on g(A), this is bounded by

2
af(x) L

ax?

—_ Sup
2 xeX

PROOF OF LEMMA A.2. Let u = E[X] and write h(x) = h(x;) + f;‘l 2 h(z)dz. Then

ax
Cov(h(X), X)
=E[A(X) (X — )]

X9
=E (h(xl) +/ —h(z) dz) (X — [.L)i|
¥ 0X

= 1

- X (9
=E / —h(z)dz-(X—/u):|
L Jx, 9%

Xu J
=K f Ix-z- ah(z)dz'(X—M)}

)

Xu 0’)
— [ L) B[ (X - ]z

1
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=/ ' %h@ JELX — plX > 2] Pr(X > 2)dz
Xy

_ /x” %h(z) Fx(2)- (1- Fx(2)) - (ELX|X > z] - E[X|X < z])dz

1

@ e (ELX|X > z] - E[X|X < z])fx(z)dz

J
:]E[ah()() : ‘y(X):|. O

_ / 2, Fx(2)-(1-Fx(2)

Proor oF LEMMA A.7. By the triangle inequality,

supN? - |F, (Fx (x)) — Fy ' (Fx (x))]

xeX

<supN°-|Fy' (Fx(x)) = Fy' (Fx ()| +supN? - |[Fy ! (Fx (%)) — Fy ! (Fx ()]

xeX xeX

< sup N°-|F,'(¢) -~ Fy ()| + sup N?.

F —F
q<[0,1] xeX,yeY f ( )| X(X) X(X)|

The first term is 0, (1) by Lemma A.4, and the second by the fact that fy(y) is bounded
away from zero, in combination with Lemma A.3. O

ProoFr oF LEMMA A.8. By the triangle inequality,

sup N77~|Fy(y+x)—ﬁy(y)—fy(y)-x|
yeY,x<N=8% x+yeY

< sup N |Fy(y+x) — (Fy(y +x) — Fy(»))|
yeY,x<N—% x+yeY

+ sup N"-|Fy(y+x)—Fy(y) — fyr(») - x|
yeY,x<N-9% x4yeY

The first term on the right-hand side converges to zero in probability by Lemma A.5. To
show that the second term converges to zero, note that

sup N |Fy(y+x)—Fy(y)— fr(») - x|
yeY,x<N=8% x+yeY

< sup N"'|fy(y+/\x)~x—fy(y)ox|

yeY,x<N~% x+yeY,1el0,1]

J

= sup ‘ fy (2)|-

yeY,zeY,x<N~% x+yeY,Ae[0,1] Iy

2 fy

< sup N"x
yeY,x<N—%

(y)—>0

because ﬁt—yy(y) is bounded, x < N=9, and & > 7/2. 0
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ProOOF OF LEMMA A.12. By the inequality |a| > |b| — |a — b|,

Zirelgft(Z)l = inf|h(2)] - sztelglfl(Z) —h(2)],
from which the result follows. O

The proofs of Lemmas A.13 and A.14 follow directly from Theorem 7.1 in IR.

Proor oF LEMMA A.15. First note that by the assumptions in the lemma, the condi-
tions for Lemma A.14 are satisfied. Moreover, by the assumption that 0 < § < 1/6, it fol-
lows that O, (bN) = 0,(N~") for n < 6 -5, and O, (In(N)N~'b3?) = O, (In(N)N~1+2%) =
0p(1), 0,(IN(N)N~1b") = 0, (In(N)N~144%) = 0 ,(N~7) for < 1 —48, and O, (In(N) x
N1 bx,ﬁ) = Op(ln(N)N*”ﬁ‘s) = 0,(1). Hence the results from Lemma A.14 imply

In(N 1/2
sup Vﬁ(w7x)—g(w,x)|=0p((Lz)) +b§v>=0p(1), (C.1)
weW,xeX N~bN
% vy - %8 o =0, () L) —opv ) c2)
-l () o)y
for n < min(1 — 46, 6 - 5), and
7§ P*g _ In(N) \ /2 s\
weiéfﬁexmw’”—m“””‘—%(@v.—bg) +ok)=oph €3
Now
Bpam_Bpam
1. B
=N g(F (Fx (X)), Xi) — E[g(F,! (Fx (X)), X)]
i=1
1Y . 1Y
= 28 (Fx (X0), X)) = = 3 g (Fy! (Fx (X)), X)) (C4)
i=1 i=1
1 1 X
- (ﬁ > 8(Fy! (Fx (X)), Xi) = Zg(F{Vl(Fx(Xi)),Xi)> (C.5)
i=1 i=1
1 & A1 1 —1
+ 5 2 8(Fy (Fx(X0), Xi) = 52 > S g(Fy! (Fx (X0), Xi) (C.6)
i=1 i=1
1N o 1 e
+ 7 2 8(Fy (Fx(Xn), Xi) = 5 3~ g (Fy/ (Fx (X)), Xi) (C.7)

1. 1
- (ﬁ 28 (! (Fx(X), Xi) = - D g (Fy! (Fx (X)), X,-)> (C.8)
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1 L 1 Y -

TN Eg(le(FX(X,-)), Xi) - N ;g(FWI(FX(Xi)), X)) (C.9)
1Y R 1 Y

+ 5 ;g(Fszl (Fx(X0), X)) = 4 ;g(FI;,l (Fx (X)), X)) (C.10)
1

+ 5 2_8(Fy! (Fx(X0), Xi) = E[g(Fy! (Fx (X)), X)]. (€.11)

Since (C.6) is equal to S5 — g™, (C.9) equals B} —gPa™, (C.10) equals A5 — gPam,
and (C.11) equals gP*™ — gPam we only need to show that the sum of (C.4) and (C.5),
and that of (C.7) and (C.8) are 0 ,(N~1/2).

First consider the sum of (C.4) and (C.5) that is equal to

N
o (Fx(XD), Z v (Fx(X0), X;)

|Mz

( i H(Fx(X0). Xi) - %%g(FV‘Vl(FﬂX,-)),Xi)).

i=1 i=1

By a second order Taylor series expansion of g and g in F V}l (Fx (X)) this is, for some W,
and W, equal to

1 gz A
328 (R (Fx (X)), X)) (B (Fx (X)) = Fyp (Fx (X))

Nizla
(C.12)
IR W, X; Fy(X; Fx (X))
ton 2 P UL )(Et (Fx (X)) — Fpt (Fx (X0))
L8 (o (), ) (i (P (X0) — i (P ()
_N‘—I%( (X( ) x (X;) x (X;)
= (C.13)
1 N (92 A —1 2
_W,; awZ(W”X) (Fy' (Fx (X)) — F' (Fx (X))
N N
1 g g . ._
=% izzl(%(le (Fx(X)), X;) — ﬂ(le (FX<XL~)),X,-))
x (Fy! (Fx (X)) — Fi (Fx (X)) + 0p(N7'/2)
g . dg
= sup %(le (Fx(x)), x) — ﬁ(le (Fx(x)), x) (C.14)

x su§|(1:"1;,1 (Fx(x)) — F;,! (Fx (x)))| + 0, (N712). (C.15)
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We used the fact that (C.13) is 0, (N ~!/2) because #*g(w, x)/dw? is bounded and because
sup,cx (Fi! (Fx (%)) = F (Fx (x)))2is 0,(N~"/2) by Lemma A.7. Also, (C.12) is 0 ,(N~/?)
by the same argument because the bandwidth choice implies sup,,cyy yex |2&(w, x)/
Jw?* — 3*g(w, x)/ow?| = op(1) by (C.3), so that

7?g(w, x) J’g(w, x) 8w, x)  *g(w,x)
sup g 3 < sup giz—i- sup & 7~ A 5
weW,xeX Jw weW,xeX ow weW,xeX Jw ow
9* w, X
= sup Lz) op(1).
weW,xeX Jw

Finally, by Lemma A.7,

sup|15"v7/1 (ﬁX(x)) — FVT} (FX(x))| — OP(N_1/2+")

xeX

for all » > 0. By the assumption of the lemma,

98 g e _
sup @(le(FXm)ax)—5(FW1(FX<X>)J) =0,(N7")

for some 1 > 0. We conclude that the sum of (C.4) and (C.5) is 0,(N~1/2).
Next, consider the sum of (C.7) and (C.8) that is bounded by

sup| [¢(Fy' (Fx (), x) — g(Fy' (Fx (x)), x)]

— [(Fy! (Fx (0), x) - g(Fy (Fx (0)), )]|.

By a second order Taylor series expansion, with intermediate values W(x) and W (x),
and the triangle inequality, this is bounded by

2 (B (B 0), 0)[Fy (P (0) = ! (B ()]

sup
_j_i(F (Fx (x)), x)[F! (Fx (x)) — (Fx(x))]l

+sup = 1178
xeXz

2L 07w )y (Frx) = ' (Br)]|

L1 7*g
—Su
2 xeg Jw?

& (W), x)[E! (Fx (x)) - (FX(X))]Z',

where because the second derivative of g(w, x) is bounded on W x X, by Lemma A.4, the
expression on the last line is 0, (N ~1/2), The first term is bounded by

sup
xeX

|55 ! (B ).) = 55 (5 (Pre) )|

<[y () = £y (Fx 0]
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Jd
+ sup| S (Fy;! (Fx (x) %)

xeX

x [Fy! (Fx () = Fy! (Fx (0) = Fy! (Fx (1) + Fy! (Fx () ]|

By a first order Taylor series expansion of j—i (FV},1 (Fx(x)), x) in Fx (x), we have, because
the second derivative of g(w, x) is bounded and the density of ¥ is bounded from 0 on
its support, that by Lemmas A.4 and A.3, the expression on the first line is 0,(N~1/2).
The bound on the expression in the second line is proportional to

sup|Ey,! (Fx (0)) — F! (Fx (%)) — Fy (Fx (0)) + F! (Fx (1))

xeX

This expression is bounded by

1 s A
sup - Fw (Fy, (Fx(x))) — Fx(x)
xeX fw<F;Vl<Fx<x>>>[ w(Fiy (Fx () = Fx ()]

1 N ’

- Fw(Fy, (Fx(x))) — Fx(x)
fw(FV‘V1<Fx(x>>)[ w(Fy (Fx())) = Fx (0]
+ sup Fi (Fx(x) — Fpl (Fx (x))
xXe
1 N A
- . F (F ! (Fx (x) —F(x)‘
fW<F;Vl(FX(x>>)[ wFy (Fx () = Fx (0]
+ sug PA’V}I (Fx(x)) — Fﬁ,l (Fx(x))
xXe
1 ~ ‘
- Fw (F 1 (Fx () = Fx(0)]].
fw<F;V1<Fx(x>>)[ wFy (Fx () = Fx )]

By Lemma A.7, the expressions in the last two lines are o, (N ~1/2y The expression in the
first line is bounded by

sup [ 11A B 11 }[ﬁW(FI;}(FX(x))) - ﬁX(x)]‘
xexILfw (Fp (Fx (%)) fw(Fy, (Fx(x)))
1
+ sup —~
xex!| fw (Fyy (Fx (x)))

x [Fw (Fy! (Fx (x))) = Fx (x) — Fw (F! (Fx (0))) + Fx (x)]

The expression in the first line is bounded by

sup
xeX

1 1 ~ ~ ~
- - Fuy (F (F —F )
fw (Fy  (Bx () fw (Fy  (Fx (1)) x suplFw (Fy (Fx () = Fx ()
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By a first order Taylor series expansion of in Fx(x), the fact that fi (w) is

-1
fw (Fy (Fx (x)))
bounded from 0 and its derivative is bounded on W, and Lemma A.3, the first factor is

op(N ~9) for all § < 1/2 and by Lemma A.3, the same is true for the second factor, so that
the productis o, (N —1/2y Because fw (w) is bounded from 0 on W, the expression on the
second line has a bound that is proportional to

sup‘I:"W(FI;,I(I:"X(x))) — Fy(x)— I:"W(FI;,I(FX(x))) + Fx (x)|.

xeX

We rewrite this as

sup|Fy (Fyy! (Fx (1)) = Fw (Fy! (Fx (1))

xeX

— (Fw (Fy, (Fx () = Fw (Fy) (Fx (3)))))]
<sup | Fw (Fy! (Fx (0))) = Fw (Fy' (Fx (x)))

- (FW(FI;/] (ﬁX(x» - FW(FI;/l (FX(x)))))|lsupx€X |Fypt (Fx (x)—Fppt (Fx (x))| <N~

+4- 1supxex [Fy (Bx (x)—Fp! (Fx (x)|>N-9"

By Lemma A.7 and the mean value theorem, the final termis 0, (1) if 1/3 < 6 < 1/2. By
Fy! (Fx () = Fy (Fx (0) + [Fy (Fx (0) = F ! (Fx ()],

and defining w = F;;' (Fx (x)) and @ = Fy,' (Fx (x)) — F;;' (Fx(x)), we have that the first
term on the right-hand side is bounded by

sup | Fw (W + ) — Fy (0) — (Fy (W + W) — Fy (0))| = 0, (N~%/3)

weW, |w| <N~ i+weW
by Lemma A.5, with 1/3 < 6 < 1/2, n = 2/3, so that we finally conclude that the sum of
(C.7) and (C.8) is 0, (N~1/2). O

Proor or LEMMA A.16. The proof involves checking the conditions for Theorem A.2
from IR (given in Appendix A in this supplement) and simplifying the conclusions from
that theorem to the case at hand.

Define

hi(w, x) = fwx(w,x) and hy(w,x) = fwx(w, x) - g(w, x),

n(h) - h_la
so that
wx)=1,
I =2 g(Fy (Fx(x)), %)

g T ()T fyx (F (Fx (), x)
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== :
Jh, hi fwx (Fp (Fx (x)), %)
B J fx(x)
t(x) = F; (Fx(x)), —t(x) = ;
w (@) 5 fw (Fy (Fx (x))

ai(x) =—g(Fy! (Fx(0)),%),  aa(x)=1.
With Y; = (Y;; Yi) = (1Y;), we have
a(x)y=y— g(Fy' (Fx(x)), x).

Applying the results in Theorem A.2, we have

/ K(L D L2 X, uz) du,
U,

by ax
1 . .
:/K(u, W; FW (Fx (X)) f)l((Xl) _u> du
; by fiw (i (Fx (X))

Substituting this into the result from Theorem A.2, we get
VN (@5 - goam)
;N

~ e (el (0. )

i=1

PR 71 7 j
/K(VVZ FW (Fx (X)) n f)lf(Xl) .u,u)du
. by fw (Fy, (Fx(Xi)))

_ E[(Y — g(Fy' (Fx (X)), X))

-1
/K<W R Bx0) | fxX) .u,u)duD
; by fw (Fy, (Fx (X))

+o,(1).

Adding and subtracting g(W;, X;) in both terms, this is equal to

N

1
Yvi_ (VVMXZ)
NN 2{( 8%, 0)
/K(V,-—F;;(FX(X») fx(Xi) u u)du
; b fw(Fy (Fx (X))

- IE[(Y - g(W, X))

|
/K(W Ey Fx(0) | fx() .u,u)du“
u by fw (Fyp! (Fx (X))
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N

1
o Z{(g% Xi) - g(Fy! (Fx (X)), X))
i=1

| , ;
/K<W Py (PxX0) | [x(X) .u,u)du
. by fw(Fy, (Fx (X))

+

B[ (608, X0 - g(Fy (Fx (X)), X))

_ -1
NG I SR P

by fiw (Fy (Fx (X))
+0p(1)
1 N
= Yi—g(W;, Xi
b ;( g( )
1 . .
/ K(Wl Fy (Fx (X)) + f)f(Xl) U, uz) du,
0 bn fw (Fp (Fx (X))
+ ! i{(g(u/iaxi)_g(F_l(FX(Xi)),Xi))
VNby = W
=1 . .
/ K<Wz Fy' (Fx(X)) | f;f(Xl) s, u2>du2
uy by fw (Fp (Fx (X))
— E[(g(W, X) - g(Fy' (Fx (X)), X))
- -1
/ K(Wl Fy (Fx (X)) + f)f(X) - Uy, u2> duz“
u bn fw(Fy, (Fx(X)))

+o0,(1).

Having checked the conditions for Theorem A.2, the second part of the result in the
lemma follows directly from the second part of the theorem. O

PRrROOF oF LEMMA A.17. We prove the result in three parts. First, we show

N N

1 1

N 28 (Fy (Fx (X)), Xi) = 5 >~ 8(Fyy (Fx (X0). X)
i=1 i=1
1Y ;
= 2w (Fy! (Fx(X0), Xi) - (B! (Fx (X)) = Fy! (Fx (X)) (C.16)
i=1

+ op(N_l/z).
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Second, we prove that

NZgW NFx (X)), Xi) - (B (Fx (X)) — ' (Fx (X))
) (C.17)

gw by, (Fx (X)), Xi) ~ 4 -1/2

= — (Fw (F (Fx (X)) = Fx (X)) + 0,(N~1/?).
NZ it x| w (FC0) = Fe) 0, (N0)

i=1

Third, we show that

1 N F'71 F Xi 7Xi -
gw (Fy (Fx(Xi)) ).(FW(FI;}(FX(X,-)))—FX(Xi))

N & fy(Fy (Fx (X)) -

L Z l[lpam(VV,’) + OP(N_l/z).

Together these three claims, (C.16)-(C.18), imply the result in the lemma.

First, we prove (C.16):
1 _
Zg H(Fx(X0), Xi) =+ > S 8(Fy! (Fx (X)), X))

i W (Fx (X)), Xi) - (Fy (Fx (XD) — Fy! (Fx (X))

i=1

<sup|g< H(Fx (), x) — g(Fy' (Fx (), x)

' (Fx (), x) - (Fy! (Fx () = F! (Fx (1))

—gw(Fy

1 7* 1 2

5 sup —g(w,x)|- sup |FW (@) — Fy (]
weW,xeX| oW q¢€l0,

By Lemma A.3, it follows that for all 6 < 1/2, SUP (0, 1] N?. |I:“V},1(q) — Fﬁ,l(q)| =o0p(1).In

2
combination with the fact that 57% (w, x) is bounded, this implies that
2¢

Jw? sup |F @) — F' @[ = 0,(N7172).

qel0,

sup (w X)| -

weW,xeX

This finishes the proof of (C.16).
Next, we prove (C.17),

Zgw NFx (X)), X)) - (B! (Fx (X)) — Fy (Fx (X))

gW(F_l(FX(Xi)),Xi) . B
NZ fW(V;ﬁ,l(FX(Xi))) - (Fw (Fy! (Fx (X)) — Fx (X))

i=1
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gw(w, x) - (F, (@) — Fy (@)

< sup
weW,xeX, qe[0,1]

gw(w, x) - 1
o (Fuw (F -
fw (Fi (@) (Fw (B (@) = 4)

< sup |gw(w,x)|
weW,xeX

~ 1 ~
F M) — F (@) + ———— - (Fw (F (@) — 9)|
( w w ) fW(Fﬁ/l(q)) ( W( w ) )

- sup
q<[0,1]

so that Lemma A.6 implies that (C.17) holds.
Finally, let us prove (C.18):

1w (Fy (Fx (X)), X))
N = fy(Fp' (Fx (X))

1 S Fy (Fx (X)), X (1Y
_N; fir (Fpl (Fx (X)) Nglwf'SFV(F“X‘”_FX(Xl)

: (FW(FI/T/l (Fx (X)) — Fx(X)))

1 iz gw (Fy' (Fx (X)), X;)

1 < . —F Xi .
N2y s~ F D)

This is a two-sample V' -statistic. The projection is the sample average of the sum of the
expectation over W} if we fix X; = x (this expectation is zero) and the expectation over
X; if we fix Wj = w, which gives ¢}, (w). Thus,

1 - 8w (Fy! (Fx (X)), Xi)
N= fw(Fy (Fx (X))

. (FW(Fp}l(FX(Xi))) - Fx(X)))

=N Z Ui W) +0p (N1,

which is the claim in (C.18). O

ProoFr oF LEMMA A.18. We prove this result in two steps. First we prove

FX(X) FX(X ), Xi)

||Mz
||Mz

 gw(Fy (Fx (X)), X))
fu(Fy! (Fx (X))
= op(N_l/z).

(Fx(Xi) — Fx(X))) (C.19)
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Second, we prove

1 N F*l F Xl ,Xl A
1 sy (Fx (X)) ).(FX(Xi)—FX(Xi))

N = fw(Fp' (Fx (X))

(C.20)
LN
pam -1/2
= NZ‘#){ (Xi)+0p(N / )
i=1
Together these two results imply the claim in Lemma A.18.
First, we prove (C.19). By a second order Taylor series expansion, using the fact that
g(w, x) is at least twice continuously differentiable,

(A A
N;g(le(FX(Xi)),Xi) - N;g(le(FX(X"))’Xi)
aw(Fy (Fx(X), Xi)

fw (Fy! (Fx (X))

(Fx (X)) — Fx(Xl-))‘

= suplg(Fy' (Fx (). x) = g(Fy' (Fx (x)). %)
F N (F , .
R -(Fx<x)—FX<x>)‘
fwr (! (Fx (x)))
7 J

. 8w, gww - Lan|
<~ sup | - IW___\sup|Fx (x) — Fx ()|

ZwGW,xeX fw(w) (fW(w))2 xeX
=0,(N7'7?)

by Lemma A.3. This finishes the proof of (C.19).
Second, we prove (C.20):

1 N F_lF Xi 7Xi 2
Ly sty B 0L 2D (x) - Py (x)

N &= fy(Fp' (Fx (X))

1 iigMF;VI(FX(X»),X»
N2

Ay <x. — Fx(X))).
i (F X (Fx (X)) (L, = i (X0)

i=1 j=1

This is a one-sample I/ -statistic. To obtain the projection, we first fix X; = x and take the
expectation over X;. This gives 0 for all x. Second, we fix X; = x and take the expectation
over X;. This gives a,[;l))(am(x) defined above. This finishes the proof of (C.20), and thus
completes the proof of Lemma A.18. O
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ProoOF oF LEMMA A.19. Adding and subtracting terms, we have

Blc_BlC
1 Y g .
= 2 g Wi X0) - dOW) - (X = (W)
i=1 (C.21)
1Y g A
— = 2SS X - dOW) - (X = (W)
i=1
1 XL ap
N NZ@(M’Xi)'d(”/")'(Xi_m(M))
= C.22
L . ( )
= 2 50y Wi Xi) - dOW) - (Xi = m(Wy)
i=1
1 Y g
5 2 o We X0) - dOW:) - (X; = m(W7))
i=1 (C.23)
1 N g
— = 2SS, X - dOW) - (X; = m(W))
i=1
1 N g -~
o 2 5 (Wi Xi) - d W) - (Xi = (W)
i=1
C.24
1 N g | |
= 2 50 Wi Xi) - dOW) - (Xi = m(Wy)
i=1
1Y g 1
+ 57 2 o Wi Xi) - (W) - (X — m(Wp) — B (€29

Because (C.23) is equal to Blgc - glc, (C.24) is equal to Bl,fl — glc, and (C.25) is equal to
g'° — Bl°, it follows that it is sufficient for the proof of Lemma A.19 to show that the sum
of (C.21) and (C.22) is op(Nfl/z). We can write the sum of (C.21) and (C.22) as

1 g R
N 2 gy o X0 - dOK) - (Xi =)
1Y g
_N;T(myXi)‘d(”/i)'(Xi—ﬁ’L(m))

w

1 o
- (N 3 W X0 (5= )
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1Y g
-5 ; = (Wi Xi) - d (W) - (X = m(W»))

1Y 08 g )
=~ gd(Wn - (£<W,-, Xi) === (W, X») (m(W;) — (W)

Y p)
< sup|d(w)|- sup ﬁ(w,x)—ﬁ(x,m

weW weW,xeX

- sup |[m(w) — m(w)|
weW

=C-0p(N7")-0p(N77)
for some 1 > 1/4, and so this expression is op(N”/z). O

Proor orF LEMMA A.20. The proof consists of checking the conditions for Theorem A.1
and specializing the result in Theorem A.1 to the case in the lemma.

We apply Theorem A.1 with z = (21 22) = (wx), Z; = (W; X;), w(2) =d(z1) - (z0 —
m(zy1)) = d(w) - (x — m(w)) (so that w(z) goes smoothly to zero on the boundary of Z),
L=2and A= ((1)) Then {k:k < A} = {kg, K1} = {(8), ((1))} and
hg"")(w, x)
RS0 (w, x)
AV (w, x)

thl)(w, x)

MM (w, x) =

with
thO)(w> x) — fwx(w, x),
h;KO)(w, x) = fwx(w, x) - g(w, x),

(k1) _ 9
hl (wax)_ ﬂwaX(w’ x)>

B J J
hg D (w, x) = g(w, x) - ﬁfwx(w, x)+ fwx(w,, x) - ﬂg(w, Xx).

The functional of interest is

(k1) (ko) 7,(k1)
hy V' hy -y
hﬁKO) (thO))Z

J

The derivatives of this functional are

9 n( [A])_ héKl) . h;K0)~h§Kl)
athO) (thO))2 (thO))3

J J
fwx(w, x) - ﬁg(w, x)+g(w, x) - %fwx(w, x)

(fwx(w, x))?
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d
gw,x) - fwx(w, x) - %fwx(w, x)

+2
(fwx (w, x))3

7 o ) fwx(
%g w7-x) g(U),x %fWX w7x)

T fwx(w,x) (fwx(w, )2
J

d (h[“) h(l"‘) afWX(W, X)
" T T R0 T (o, 00

(9 n(h[)\]) _ h;KO) z_g(w, x) fWX(w7 x) - _ g(w’ x)
ah\<v (h{"0)2 (fwx (w, x))? fwx(w, x)’

J 1 1
0 y= L ,
&hg"l) n(#) hg’“’) fwx(w, x)

g, 1(w, x) =d(w) - (x — m(w)) - fw(w, x)

J J
s Eg(w, x)  gw,x)- %fwx(w, x)
fwx(w, x) (fwx (w, x))?

d
P g(w, x) - — fwx (w, x)
=dw) - (x —m(w)) - (—@g(u), x)+ ow :

fwx(w, x)
P
%fwx(wﬂc)
.20, ) = d () - (x =m(w) - fix (w20 - | =
P
@fwx(w,x)
= —dtw) (= mw) - 2
10,9 =) () - (50

= —d(w) . ()C — m(U))) . g(UJ, X),

ey 2(w, x) =d(w) - (x — m(w)) - fwx (w, x) - =dw) - (x — m(w)),

fwx(w, x)
(=1l (w, ) = a1 (w, x)

=d(w) - (x — m(w))

J
J g(wax)'ﬁfwx(w’x)
' (_%g(w’ O w0 ’



36 Graham, Imbens, and Ridder Supplementary Material

J
1)lxol ,,(x0) d %fWX(W, X)
(=D"la, 50 (w, x) = ayy2(w, x) = —d(w) - (x —m(w)) - TR I

(D1 (0, %) = < (dw) - (x = m(w) - g(w, 1)
=d(w) - (x — m(w)) - %g(w, x)
+ 8w, x) - (x = m(w) - d(w)
~ g, 1) - d(w) -+ m(w),
(D) (w, x) =~ (dw) - (x = m(w))

Jd Jd
=—(x —m(w)) - %d(w) +d(w) - ﬁm(w).

Then

2
D DYl (w, 1) Fim
m=1

K<A
= (=Dl (w, x) + Y; - (=D)*la) (w, x)

+ (=DMt (w, x) + Vi - (= 1)) (w, x)

d
g(wax) : Or)_fWX(wa x))
w

Jd
= d(w) - (x = m(w)) - <_%g(w’ £+ Twx(w, x)

Jd
@fWX(UJ,X)
Yy o) S

J
+dw) - (x —mw)) - —-g(w, x)
(w, 1) - ( iy d(w) -~
+ g(w, x) - x—m(w))~@ (w) = g(w, x) - d(w) - ——m(w)
p J
+Y;- <—(x —m(w)) - ﬂd(w) +d(w) - Em(w)>

Jd
—waX(W, X)

=—(Y —gW, X)) (afWX(W o) (X —mOv))

d J
+ (X —mW)) - W) —dW). %m(W)).
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Since
%fwx(w,x)
E _(y_g(w7x))' md(w)(x—m(w))
+ (x — ) 2 dwy—d 2 =
x —m(w) " w (w) (w)-&wm(w) =
it follows that
T 2
— DN B[al) Wi, X)) Yim] | =0

and, therefore,

N
Z(Z( Dl ZaWWi,Xi)Y,-m)

1
\/—N K<A
1 N
= \/—N Z lplC(Yi’ I’Vi,Xi),
where

J
— fwx(w, x)

g (y,w, %) = —(y — g(w, x)) - (&w -d(w) - (x — m(w))

fwx(w, x)
J J
+ (x — m(w)) - Ed(w) —d(w) - ﬁm(w))

PRrROOF OF LEMMA A.21. We start with the inequality

(sup i) — fir(w)])

weWw

fwrw) — fwrw))*| < _
(i ww) inf i)

sup
weWw W(w)

Under the stated restriction on 6, the bandwidth sequence satisfies

N bl/2 — 00
VIn(Ny N ’
which, by Lemma A.11, implies

NY4p3, — 0,

f 2 ~1/2
(sup | fiv () — fivw)])” = 0, (N7
weW
Now observe that the denominator is bounded away from zero since, by the Trlangle In-
equality, we have \fw (W) + | fiw ()] > | fw (w) — fiw (w)| and, therefore, infyep |fw ()] =
sup,ey [fw (W) — fw (w)| — infuew | fw (w)] > infuwew | fiw (w)] — SUPew | fiw (W) — fiw (w).
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By Assumption 4.1, inf,ew | fir (w)| is bounded away from zero, with the result then fol-
lowing. O

ProoOF OF LEMMA A.22. We start with the inequality

(h1(w) — hy(w)) (ha(w) — hy(w))

sup | =
weW| hy(w)

sup |y (w) — by (w)| x sup |hz(w) — ha(w)]
< weW weW

B inf |/, (W,
U}QWI 2|

The remainder of the proof is along the lines of that to Lemma A.21. O

ProoF oF LEMMA A.23. Let h(w) = (hi(w), hy(w)) = (m(w) - fir (w), fw (w))’. Then

N .

e 1 Jtnip (W)

m= gw(vvl-,Xi)-d<W,-)-(X,-— P )
i=1

hZ,nip(VVi)
1 N
=5 2 &w Wi, Xi) - d(Wy) - (Xi = m(W)) (C.26)
i=1
- ii Wi, X;) - d(W;) - (ill,nip(Wi) B hl(VVi)) 2
N3 s T N W) '

Expanding the ratio® in (C.27) yields

1Y hi(Wi)  hnip(Wh)

- Wl-,Xl-ydWi-< it )

nglng( o ha (W) h2,nip(I/Vi)
1 N

=— 28w (Wi, X0) - d(Wp) -
i=1
1 N

— 7 28w Wi, Xi) - d(W))

i=1
h1(W;)

ho (W) 2oy pip (Wi)

W(ﬁl,mp<m> — m(Wihynip(W5))  (C.28)

(C.29)

(homip(Wh) — ha (W)’

N
1
+ 7 2 gw (W, Xi) - d(W)
i=1
. h1 (W)
hZ(VVi)hZ,nip(VVi)

(C.30)

(1 mipWs) — hi W) (hamip(Wi) — ha(Wh)).

IThe ratio expansion is of the form

a a 1<A aA) a , a ., N
cec=—la-=b)+ —=0b-b2 - —(@-a)b-Db).
b b b b b2b bb
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First consider (C.29). By Lemma A.21,

1d hy (W) ; )
‘N ;gW(Wi,X,-) AWy - PR (ha,mip W) — ha (W)
< S | gy (w, x) - d(w) - m(w)| sup |+ (fir(w) — fir(w))’
weW,xeX fw(w) weW! fy (w)
=0p(N~'7)

if the NIP estimator is uniformly o,(N~1/4), which holds if % <6< %. An analogous
application of Lemma A.12 can be used to show that (C.30) is 0,(N~1/?) under the same
condition.

Now consider (C.28). We express it as the sum of a variance and a bias term:

N

1

— 2 &w (Wi, Xi) - d(W))

i=1
1
fw W)
1 N
+ 7 28w (W Xi) - d(Wh)
i=1

. 1
fw W)

(1 nipW5) = B[y nip(Wi)] = mWi) (ha,nip(Ws) — E[ Az nip(W)]))

(h1 (W) — E[h1 nip(Wi)] — m(W;) (ha(Ws) — E[ho.nip(Wi)]))-

The bias term is O, (N 172y if 5 > % . After substitution of the NIP estimator, the variance
term is

N
1
— 2 &w (Wi, Xi) - d(W))
i=1

s—1
1 1 e ~(
WZ 2 ﬁ(hllfNW —E[A 3 (ro(W0)]
J=0lul=j

— ) (R (16 (W) = LAYy (o W) ]) (Ws = 1o (W)™ )

We consider separately

1 N
— 28w Wi Xi) - d(W))
= (C.31)

1 ! 1 A R
T 2 2 g e (o 90) B[ (o W) ) (Wi = ro (W)
=0 =i
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and

1 N
5 2w (Wi Xi) - d(W))

i=1
(C.32)

44
']’f:,(( )) Z Z héﬂzsz (s (W) — [hélu]i/W(rb(W))])( i — (W)X

U\IJ

We show that (C.31) is asymptotically equivalent to an average. The same method
shows that (C.32) is also asymptotically equivalent to an average, but we omit the details.
The expression (C.31) is a linear combination of terms,

1 N
Dy == D _ewWi, Xi) - d(Wy)
i=1
1
fw (W)

L NN
=% DO an (Wi, Xi, X, Wp),

i=1 j=1

(it (s W) = B gy (o W) ]) (Wi = rp (W)

with

aN,/.L(I/I/i7Xi7Xj7 VI/]) -

_gW%,X,-)d(Wi)( 1 XK(,,L)<W rbN<W>>
by

fw (W) sl by
1 Wi —rpy (Wi)
e (R o
N

Therefore, D, is a V' -statistic with a kernel that depends on N so that the usual projec-
tion theorem does not apply directly. Instead, we derive the projection directly. First, we
bound the second moments of ay . (W;, X;, X;, W}). For j # i, we have

E[CIN’M(I/VZ', Xi’ X]’ VV])Z]

< SPuew lw — rb(w)|2|“‘E XZK(“) W — rbN(W)
- b2|,U~|+2 bN
N

< £E|:K(M)<W rbN(W)) i|
b3

N by

because the conditional variance of X given I is bounded. Because given W; = w,

=N 2
[K(u)<w> ‘VVi:ﬁ{|=/ K(M)(%f\/(@) fw (w) dw,
W N

N
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we have, by a change of variables to t = (w — r4, (0))/by with Jacobian by and the
boundedness of K® (¢) and fy (w), that this integral is bounded by Cby and we con-
clude that

E[an,. (Wi, Xi, X, W))?] = O(b3)).
For j =i, we have
Elan, (Wi, Xi, Xi, Wi)*]

1 We, X)) 2d(W))> Wi —rpy (W) \°
_ [gW( fW(VI)/l)Z( ) XIZK(/'L)< rbN( )) (W,-—rbN(W}))ZM:|

b12v+2\,ur\ N
1 gw (Wi, Xi)*d(Wp)?
by fw (Wi)?
A\ 12
X IE[XK(M) <4W _ l:l]’\f[V(W’_)>i| (W; — rbN(Wi))z“]
2 o [ewW, X2dW? oy (Wi ron (WD)
C2420ul W2 ! b
bN fw W) N
% EI:XK(“) <M]\f;’(%>i|(m _ rbN(VVi))ZMiI'

The first term on the right-hand side is bounded by

2 2
b%E[KW<—M_”’N(W> } < K(W(—w_r””(w)) fw (w) dw

N by % by
C w — rp, (W) 2
+b—2f ) K(“)<—bN ) fw (w) dw,
TRAN N

where WéN is the internal set of the support. Because the argument of K™ is 0 on the

interior set, the first integral is obviously O(bx,z). The second integral is

C wi+by _ 2
= K® (—“’ wal - 1) fw (w) duw
N YW

C " ew(w—w )
+b_2f ) KM( 3 +1> fw (w) dw.
N YWyu—0ON

Because the kernel has support [—1, 1] and its derivatives up to order u are bounded so
that

2
w — wy
K(M) <W — 1) < Clwl§w§w1+2bN’

2
w—w
K(ﬂ) <Ta + 1) =< Clwu—2bN§w§wua
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the second integral by the boundedness of fjy is O(b;,l).
The second term on the right-hand side is bounded by

< ) w> >2 o
b12v /W</WK : < by fww)dw ) fw(w)dw
/ I, K(m( rbN(w)) fo () f () o i,

This integral is O(bx,l) by a change of variables with Jacobian by in the inner integral.
The third term on the right-hand side is bounded by

/K(M)(%(w))/‘K(M)(%"J(M)fw(w)dwfw(lb)dﬁ) —0(by)
W N

N

C
b2

by a change of variables in the inner integral. We conclude that
E[an,. (Wi, Xi, Xi, Wi)*] = O(by).

The next step is to express D, as an average. Define

gW(U) x)d(x) () Wi —rpy (w)
N (X Wi) = 1+|“| //  fww) (XJKM( bn

—E[XK(“)(W):DW) — rpy W) fw x (w, x) dwdx

N
and
| N
E#:—NZCN,M(X]-,W]-).
j=1
Then
N(N-1) N(N-1)
Dy = Ey=—7—Dy1~ M)+<T—1>EM+DM,2,
with
1 N
D/J,,lz_m Z aN,/.L(VI/iaxi7Xj7 I/I/j)7
i#j=1
1N
Dy =5 2 an.u Wi Xi, Xi, W),
i=1
Now

N

1
3 (an u Wi, Xi, Xj, W) = ey (X, W),

Dy —Ey=———c—
ol NIN-1) £
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with

E[(an,u(W;, Xi, Xj, W) — eN u(Xj, W)))

x (an, Wi, Xip, Xjr, Wy) — en, (X, Wi)) ] =

if) i, j#£),G)i=i,j#j,and (iii) i # i, j =/, because

Elan,.(Wi, Xi, X, W)W, X;] =0,

E[aN,/.L(W/h Xi> Xj7 I/I/j)] = 07

E[aN,/.L(VI/i> Xi’ X]7 I/V})|Xja I/I/j] = CN,/.L(I/V}‘7 Xj)7

Elew u (W, Xp] =0
Therefore,

E[(DMJ _EM)Z]

1
T NN —-1)? O E[(an. Wi, Xi, X, W)) = enu(Xj, W)))
i#] I#]

X (aN,/.L(VVi’7 Xir, Xj” I/Vj/) - CN,M(Xj,’ I/V]/))]

1 2
= NN 12 ;E[(M,M(Wi’ Xis Xj, Wj) = en,u (X}, WD),

Because
E[(an (Wi, Xis Xj, W) — en (X, W))]
— E[(an.u Wi Xis Xj, W)))] = E[(en (X W))]
<E[(ay u (Wi, Xi, X;, W)*] = O(b3),
we have

E[(Dp,1 — Ey)*]=O(N2by")

so that
N(N-1) -
T(DM 1= E)=0p(N 1bN1/2)‘
Also
IE[CN ,u( W)

gW(w x)d(x)
2+2‘“‘  fww)

Wi —rpy (w)
N

2
xXK””( )(w—rwa)“fWX(w,x)dwdx> :|
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gw(w, x)%d(x)?
2+2'M‘ [/ /  fww)?

x X2K W) (W) (W — rpy ) iy x (w, x) dw dx}

f / / K“”( r””(w)) fw x (w, x) dw dxfiy (ib) dib

=0(by")
by a change of variables in the outer integral, so that

(LIJVV; D_ 1)EM = 0,(N~'by"?).

Finally,

B[1D 1] = < Ellaw Wi Xo, Xi, W] = -/ Elan Wi, Xi, X, Wi
=O(N~'by))
so that
Dy 2=0,(N~'b3}).
Therefore, if § < 1/2, then
D, =E,+0,(N"1?).

Under the same condition, (C.32) is a linear combination of terms

1 X gw (Wi, Xy d(Woym(Wj)
SN (B (o W) = B[S (ro (W)

x (W; — rpy(W)*

1 N N
=5 2 2_ennW Xi, Wy,

i=1 j=1
with

gW(Wi,Xi)d(VVi)m(W')< 1 w (Wi = 1o (W)

Wi, Xi, Wj) = KW L 2Nt
en,u(Wi, Xi, Wj) For W) b}\;rlm by
1 W —ry, (W)
—E[ 1+|M|K(M)( bbN l‘)])(m—rbN(Wi))M
bN N

such that

Fu=Gu+o0,(N"17?)
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with
1 N
Gu=1 ng,,.L(Wj)
1=

and

N 1 ) gw (w, x)d(x)m(w) ( )(W rbN(w))
s = | ] s (w Mzttt

- E|:K('“) (W)})(w — rpy W) fw x (w, x) dwdx.
N

The final step is to show that

N

1 1
E0=—ﬁ ZCN,M(Xj,VI’j)=— Z —El))) (N_l/z)

J=1 J=1

2

with
{i=XE[gw (W, X)d(X) W],

where the expectation is over the conditional distribution of X given W, and
1Y 1Y
= 2N X W) = 5D (& —El&1) +0p(N712)
j=1 j=1

with

& =m(W)E[gw (W, X)d(X)|Wj]
and

Ey=0p(N"'7), Gu=0p(N"'?)

for |u| > 1. We only consider £y and E,,. The proof for Gy and G, is analogous. Define

UN i = 1 // gw (w, x)d(x)
Nop,j = b}\,H“' xJw  fw(w)

Wi
x X K”‘”(%(w))(w — rpyW* fr x (w, x) dwdx
N

so that CN,,u(Xj, I/V]) = le,p,,j - E[‘pN,M,j]' Now

UN,0,j =¥N,0,j,0 + ¥N0,j1

with

1 wy—by W _
di,O,i,0=E// gW(w,x)d(x)XjK< ! w)fW)((w,x)dwdx

XJwi+by fW(w) bN
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and
wy+by .
gw(w, x)d(x) VV] wy
UN,0,j1= 17— b // T (w) X1K< by fwx (w, x)dwdx
Wy W u
+— bN / , 7gw(fu;(xu));l(x)X K("‘)<—wa )fWX(w,x)dwdx
so that
1Y 1 Y
Ey= N Z(l!/N,o,j,o —El¥n,0,5,0]) — N Z(IIIN,(),j,l —El¥n,0,1])-
J=1 j=1
Obviously

| N N 2
E|:<—N§(¢/N,o,j,o— [¥n,0,7,01) + Z —E[{;] )]

—E[(¥nN,0,j,0 — §j)2]-
By a change of variables to t = (W; — w)/by with Jacobian by,

no _// . gw (Wj = byt, x)d(x)
N,0,j,0 = - 14+(Wj—wy) /by <t<—14+(Wj—wy) /by fw(W; —by1)
ijK(t)fWX(Wj—bNt,x)dtdx

so that
[N ,0,5,0 — il

S/X/111+(W,-—wu>/bN5ts—1+<Wj—wn/bN

W - bNL A (e PO
X ‘ Fo (W — 1) Jwx(Wj—bnt, x) Fwrx (W), x)

fw (W)
x | Xj||K(r)| drdx
+/ gw (Wj, x)d(x)
X

fw (W)
1
X IXjI/1 1 (W —w,) by <t<—14+(Wy—wp) /by — 1|K(0)|de.

fwx (W, x)|dx

By the mean value theorem, the first term on the right-hand side is by|X;| p(W;) with
p(W)) a (generic) bounded function of W;. The second term on the right-hand side is
| X p(Wj)(1 —Pr(w; +2by < W; <w, — 2by)). Therefore,

ln,0,5,0 — il <1XjIp(Wj)(by + (1 —Pr(w; +2by < Wj <w, —2by)))
so that

E[(¥n,0,5,0 — {))*] = ObN)
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and

2

| X
‘_ OP(N_M)

— > (¥n,050 — ElWn,0,500) + Z
N

i=1 j=1

if 8 < 4. For ¢ o,j,1, we consider the first term on the right-hand side:

wy+b
‘K( ) / : N/ gw(w, 0d() o X(w,x)dxdw‘

fw (w)
< CIX i wy<w;<wy+by -

For the other term on the right-hand side, we get a similar bound and we conclude that
E[‘l’zzv,o,j,ﬂ =O0(bn)

so thatif § < %, then

1N

= Z(lﬂN,o,]’J —El¢n,0,j1])| =

N “
j=1

op(Nfl/z).

Finally, if u > 1, then

WIEDN gy (w, x)d (x)
VM = ‘+'M' T fww)

W, —
X XjK(“) <]bTwl> (w—w)* fwx (w, x) dwdx

n 1 //w” gw(w, x)d(x)
bjl\,”L"‘| x Jwa—by S (w)

W,
x XKW (b—w”>(w — w)* f x (w, x) dwdx.
N

The first term on the right-hand side is bounded by

K® Wi —w //wl+bN
by bN

= C|Xj|1w15ijw1+bN

gw(w, x)d(x)
Jw (w)

= fwx(w,x)|dwdx

so that

E[#R..1] = ObN)

and, therefore,

N
Ep=— " (¥npuj—ElYnpjl) = 0p(N"17)

j=1
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; 1
lf o< bR O

Proor oF THEOREM A.3. Because the class of doubly averaged estimators has not been
considered previously, we provide a somewhat detailed proof. The proof consists of four
steps. In the first, we approximate the estimator by a linear function of the kernel esti-
mator ]:lnip, s (linearization). Formally, we show that

N N
1 on N
= NIN ; X:: W (h(Z1j, Zow)) (hmip,s(Z1j, Zok) — W(Z1j, Zak))
R (C.33)
+ Op(\’ N|hnip,s - h|2)-

By the assumptions and Lemma A.11, the remainder term is 0, (1).

In the second step, we express the difference between the linearized estimator and
the estimand as the sum of a bias term (that is asymptotically negligible) and a variance
term (bias—variance decomposition). The bias term will be shown to satisfy

1 N on
—ZZ (h(Z1}, Zop)) (B[ nip,s(Z1j, Zok)] — B(Z1j, Zox))

(C.34)

By the assumption on the bandwidth rate, the remainder term is o(1). Note that by
IE[h(Z,l, Z)], we mean the expectation of h(zl, 23), evaluated at z; = Zy; and z; = Z;:
the expectation is taken over the estimator of the function 4(-).

The second step leaves us with

V=W+ Op(\/ﬁmnip,s - h|2) + O(mbﬁ)’

where

‘ "

N N
ZZ% h(le,ZZk))(]:l(leaZZk)_E[]:lnip,s(ZIpZZk)])- (C.35)
j=1k=1

=

N
Define
(21,22 = 2 (h(z1. 22))
v(z1, 22 = z1, 22
and

aN,,L(Yi, Zi, Zj, Zok)

1 Zi—rpy(Z1js Zog)
=v(Z1j, Zoi) - (me YK(u)( e >

1 Z —rp(Z1j, Zog) VAT, #
D I () N J . J ) _ .
Eyz[bﬁ'“' R ( by )D ((sz o (21> Z2k)
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so that
1
w= Y — W, (C.36)
wilplzs—1 "
where
N N N
W, = SN an (Y Zi, Zyj, Zogo).
2
N \/—L 1 j=1k=1
Define

- 1 ~ Zi —rpy (21, 22)
Y, Z) = —— | ViKW [ 2y
CN,/LL( i» Zi) bk—H’u‘ Lz L] v(z1, 22) < i ( b

N
~ Z —r1py (21, 22)
By T (S5 )

x (2} 25) = 1oy (21, 22))" f2,(21) f2,(22) dz1 A2,

and

N
1 ~
=— E c Yi, Zi),
" «/N & N,[J,( i i

or, equivalently,

Uy = JN/Z /‘Z V(zl,zz)’(lag\’fv),,(rbN(zl,zz)) [h(”) (roy (21, 22))])
2 1

x (21 25) = 1oy (21, 22)) " f2,(21) f2,(22) dz1 d 2.
In the third step, we show that
Wy=U,+O0,(N"12bF). (C.37)

In the fourth step, we show that

Up = fZ{ (h(Z)) Yif2,(Z1) f2,(Zai)
5 (C.38)
- Ez|:£(h(Z))/f/le(Zli)fzz(Zzi):|} +op(1),

which gives us the representation in the theorem.
In the fifth and final step, we show that we can ignore U, for u such that |u| > 1,
because for such u,

Uy = 0,(by). (C39)
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Proving these statements implies the result in the theorem.
Now we turn to proving each of the statements (C.33), (C.34), (C.37), (C.38), and
(C.39).

StEP 1 (Linearization).
In the first step of the proof, we prove equality (C.33). First define

d(z1,2) = n(ilnip s(z1,22)) — n(h(z1, 22))

o7h’ (h(Zl, Zz))( nip,s(21, 22) — h(z1, 22)).

By a second order Taylor series expansion of n(ﬁnip,s(Zl,-, Z5j)) around h(Zy;, Z3j), we
have

1, -
|d(z1,22)| = E‘(hnip,s(zla 2) — h(z1,22))'

&2
8 ahanh/ (h(z1, 22)) (hnip,s(21, 22) — h(z1, 22)
’n
Sup ah ol (h(z))’ } nip,s (21, 22) — h(z1, 22)|

<C- |hnip,s - h|25

with A(zy, z;) intermediate between iznip,s(zl, z7) and h(zy, zp) so that

N N
1
N2 sz(zlj,ZZk) <C|hmps_h| —Op(| nlps_h|)
j=1k=1
Hence,
. NN
— Z Z[”(hnip,s(zlja Zoi)) — n(h(Zyj, Zop)) ]
NVN i3
1 VY on
=—227(h(21,,22k))( nip,s(Z1j> Zok) — h(Zyj, Zoy))
N Nj:lk:l
| NN
+—="> "d(Zyj, Z)
N N]:] k=1
zﬁii%(h(zlj’ZZk))( hnip,s(Z1j, Zog) — h(Z1j, Zok))
j=1k=1

+0, (\/Nmnip,s - h|2)

so that the linearization remainder has the same stochastic order as +/N| fznip,s — hyl?.
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STEP 2 (Bias—variance decomposition).
In the second step of the proof, we verify equation (C.34). Define

1 J N
E=—FH+ Z —n(h(le, Z5)) (hnip,s(Z1j, Zok) — h(Z1j, Zok))

so that
V = E + Op(vNlhnip s — h1?).

We decompose E into a bias and variance part, E = E};,5 + W, where
NN
Epjas = ZZT h(lea Z2k))( [ nip, S(lea ZZk)] h(lea sz))
j=1k=1
and W is defined in (C.35). The bias part is bounded by

1
‘m;gﬂh/ (h(Z1j, Zo)) (B[ hnip,s(Z1js Zog) ] — H(Z1j, Zax))

< sup
zeZ

on
- (h(2) ‘J— |El/tnip,s] — k| = O(VNbBYR)
due to smoothness of the function and Lemma A.9.

STEP 3 (Projection).
. . _ —L
In the third step of the proof, we prove equation (C.37), W, = U, + O,(N 172, N )
This is the most complicated step. First, note that

N N N

W, = szZZZaN w(Yis Zis Zyj, Zok)

i=1 j=1 k=1

is a third order V -statistic with kernel (that depends on N) ay,,. We show that this /-
statistic is asymptotically equivalent to a projection that is a single sum. Because the
kernel depends on N, we cannot use a standard result.

The projection of W, is

N
1 ~
Uy=— C (Y,Z),
I \/N; N,ulLi l
with

en.u(Yis Z))

an [, [ =
= —— v(z1, 22)
bﬁ""\/-‘«\ 7, )7,
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~ Zi—rpy(z1, 22) ~ Z —r1py (21, 22)
(e () oo (03

bN N
x (21 2) = 1oy (21, 22))" f2,(21) f2,(22) dz1 d 2.

The projection remainder is

N(N —1)(N —-2) N(N —1)(N —-2)
W, —U, = 3 Wy — Uy + 3 ~1)U,
(C.40)
+ WM,Z + W,_L,j, + WM,4 + W/.L,S
with
VN 5
Wui= Yi, Zi, Z1j, Z
/J,,l N(N—l)(N—Z) Z aN,,LL( 12 2] 1]7 2k)>
i#]#k
VN .
Weo= N3 Z an, . (Yi, Zi, Z1;, Zg),
i=j#£k
VN .
Wus=m 2o awvwYi Zis Zij, Z),
i=k#]
VN .
Wea= N Z an, . (Yi, Zi, Z1j, Zj),
i#j=k
VN .
Wus=-3 > anw(Yis Zi, Zi, Zog).

i=j=k

We prove that the projection remainder W,, — U, = O,(N~1/ ZbX,L ) by proving the follow-
ing six equalities:

Woi— U, =0,(N"'b "), (C.41)
N(N —1)(N -2 _

< ( N)3( ' 1) Uu=0,(N"'b3""), (C.42)

W,o=0,(N~12p %), (C.43)

W3 =0,(N"V2p 72y, (C.44)

W4 =0,(N3b"?), (C.45)

W5 =0,(N7'2b\F). (C.46)

To prove these results, we establish bounds on the second moment of ay, M(f’i, Zi, Zyj,
Zyi). This will be relatively straightforward if i # j and i # k. The derivation of the bound
is more involved if i = j and/or i = k. We could simplify the proof by omitting these ob-
servations and redefining the estimator by restricting the averaging to observations with
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i # jand i # k. This would amount to redefining the kernel estimator in (A.7) by omitting
observations i = j and i = k in hyp 5. We will keep these observations and derive bounds
on all second moments. We derive the following bounds, considering four separate cases

(note that the bounds do not depend on w):

Elan,u(Yi, Zis Z1j, Zy)*] = O(byF),  j#i, andk #i,

E[CZN M(Yla Zl7 2117 ZZ!) ] O(b;/'ZL), l:]:k,

Elanu(Vi, Zi, Zui Zu)*] = Oy 12),  k#i=],
[

E[an, . (Yi, Zis Zvjs Zo)?] = O(by MY, j#i=k

SteP 3A (Equation (C.47)).
First, if j # i and k # i, then
Elan,u(Yi, Zis Z1j, Zok)*]
! E[K(u)(zi—rbN(le,ZZk)>2

<
= 2L+2lu b
by N

- o 2
x W(Zvj, Zow) YiY{v(Zhj, Zop) (2} Z) = 1oy (Z1), Zox)) q

2
Sup|z - rbN(Z)l H

2
< Z€L El k™ Zi_rbN(lea ZZk))
= b12VL+2\m by

x V(Z1j, Zoy) YiY{v(Zy;, sz)}

< LE[m)(Zi—rbN<Zu,sz>>2
~uk by

X v(Zyj, Z2k)/17i1~’,~/V(le, sz):|-

Now by the Cauchy-Schwarz inequality,

Zi — 1oy (Z1js Zog) \* .
E|:K(’u')( i bN( 1j Zk)> V(le,ZZk)/Yin'/V(le’Z2k)i|

bn
g -K(“) (Zi - rbNb(ilja ZZk)>2(V(le, ZZk)/f]i)z]
- _K(“) (Zi - rbNb(fu, ZZk)>2’V(le, sz)|2|?i|2}
:E'K(#)<Zi — rbNb(flj, ZZk)>2|v(le, sz)|2E[|f’i|2|Zi]}-
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By Assumption 4.1, E[|Y || Z = z] and v are bounded on Z so that it is bounded by (con-
dition on Z;; and Zy;)

o 2 _ 2
CE[K(“)(Z’ VbZ(Zl,Zz)> }:C/K“”(Z VbNb(Zl,Zz)> F7(2)dz
N z N

and by a change of variables to t = (z — r,,,(Z1, Z»))/by with Jacobian bL: thus, we ob-
tain

Cbk/ KW f7(byt + 1oy (Z1, Zo)) dt
{tlt=(z—rp) (Z1,22))/bN ,2€Z)

< bk / K™ (0)?dt < Cbk
u
by Assumptions 4.1 and 5.1. We conclude that
Elan,u(Yi, Zi, Z1j, Zok)*] = O(bRF). (C.51)

The same proof and the same bound holds if j # k #ior j =k # .
SteP 3B (Equation (C.48)).

Next, we consider E[ay,,(Yi, Zi, Z1;, Z2;)*], where we note that Elay,,(Yi, Z;, Zy;,
Z»i)] # 0. Because

an,.(Yi, Zis Z1iy Zai)
Zi —1py(Zi)
b

: [
v(Z) YK“”( )(Z,- —rpy(Z))"
bk"t‘l/-‘l N N

—E, (V(Z,-)’(“) (%) (Zi— VbN(Zi))M>]a

N
we have
E[aN,M(f/,-, Zi, Zy;, ZZi)Z] (C.52)
1 Zi = (Z)\° 52 2
) NV . .
bzva +2ME[K(“ (bi]j) (V(Z)'Y:)(Zi — rpy (Z))) “} (C.53)
2 Zi —1py(Z)
)
e reson (25)
7 7. (C.54)
_EZ[V(Z)g(Z)K(M)<_r+(l))i|(Zi_”bN(Z,'))ZMH
N
1 Z -y (ZD\\)
(w)
] (s (s (S0)))
(C.55)

x (Zi— rbN<Z,->)2“]
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By Assumption 4.1 and smoothness, (C.53) is bounded by

—rpy(2) C z—rpy(2))?
bZL/K(M)< N )f (Z)dzzbj ZiN K(M)( b}\[]v )fZ(Z)dZ

N

C z—rpy(2) 2
+ bﬂ/z , K(“)(—bbN > fz(2)dz.
N I\, N

If rp(2) is the projection on the internal set, then z — rp(z) = 0 if z is in the internal set.
Therefore,

C z—1p0(2)\? CK ™ (0)2
KW Z_ov "7 dz<— 7
WL Joy ( by ).ﬁi@ z< o0

Next we consider the second integral. If s € ZB =7\ ZI , then at least one compo-
nent of z is in the boundary region. We can subd1v1de ZB into disjoint subsets ZB o’
p=1,...,2L — 1, and in each such subset, L,>1 components of z are within by from
the boundary. We further partition ZEN’[} into disjoint sets Z yopr? r=1,...,2kr, with
0 <K, < L, components with z;; < Z; < z;; + by and the remaining L, — K, compo-
nents with z,; — by < Z; < z,;. Without loss of generality, we assume that the first K,
components of z are near the lower bound, the next L, — K, are near the upper bound,
and the rest are in the internal region, so that

C z—rp,(2) 2
(®) N
b3 /zB K ( by ) fr(2)dz

b DT

/211+bN /‘ZI,Kr +by /Zu,Kr+1
2l Ky Z,

u,Kr+1—DN

K,
fzu Lp /Zu Lp+l— bN /‘ZuLbN HIC(’W) (Z[ — 7y 1)2
| e
Zu,Lp—bN V21,1 pr1 DN a+bn by

L
‘ ]‘[ o (42 +1> [T K™ @z dz.

I=K,+1 I=L,+1

Because the support of the kernel is [—1, 1] and by Assumption 5.1, ICI(“ " is bounded on
this support, we have

Z;—z
K;#”(% — 1) <C-1(zy <z <z +2bn),

Z]— Z
,C;MI)<ITN”1+1> <C-1(zy —2by < z1 < zy))
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and substitution gives the upper bound

211+bN 21K, +ON 2w K1 Zy,L
1 r r »Lp
2L/ / / / | |1(le <z <z;+2bN)
b z z z

IKy u,Kp+1~ bN u,Lp—bn j_1
LP
1 2by <z1 < d dzy < =
X l_[ (zur —2by < z1 < zu)fz(21, ... 21,) dz; - ZLP—TLP‘
I=K,+1 by

Because L, > 1, the integral over the boundary region is O(b;,ZL“). Combining the re-
sults, we have that

E[an,u(Yi, Zis Z1is Z21)*] = O(b3*h), (C.56)

which is larger than the bound in (C.51) and could be areason to omit the terms i = j = k
(and redefine the kernel estimator).

SteP 3C (Equation (C.49)).
Third, we consider E[aN,M(Y,-,Z,-,Zli,ng)Z]. Again we have Elay (Y, Z;, Z1;,
Z51)1 # 0. We have

Elan,u(Yi, Zi, Z1is Zok)?]

1 E[K(m(z,-—rbN<zu,ZZk)>2

bjz\fff'z\ll«\ by
(C.57)
N7 ! / 2
X W(Z1i, Zok) ViV (Ziis Zo) ((Z3; Zy) — 1on (Z1is Zak)) M}
2 Zi — rp (21, Zog)
AL i [v(zu, Z30)'8(Z1i, sz)K(“)< — )
N 2 2z (C.58)
— 1oy (Z1i5 Zog 2
xEz (g(Z)“W( NbN ’ )) ((Z; Zyy) = ron (Zvis Zo)) ™
1 , Z — 1y (Zaiy Zok) 2
+ WEZiZZk [(V(Zli, Z ) Egz <g(Z)K(“)< NbN l )))
N (C.59)

x ((Z1; Z3)" = ron (Zuis sz))zﬂ].

By Assumptions 4.1 and smoothness, (C.58) is bounded by

— oy (21, 22) 3 )
b2L /ZZ/ (M)( NN ) fZ(Z)fZZ(ZZ)dZdZZ

¢ — rpy (21, 22) N 3
- sz/Z /Z, /Z K(M)( bNN] 2 ) fz(z1,22)fz,(Z2) dzodz1 A2,
N 2 2

¢ — rpy (21, 22) 3 3
+ ZL/ / / Kw)( b=l 72 ) fz(z1, 22)fz,(22) dzp dz; d2,.
bN Zy ZI\ZI Zy N
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Because z; — rp(z1,22) =0if 21 € ZiN 1» the first term on the right-hand side is equal to

CK(M]) 0 . - 2
12L ) / / / K(Mz)(M) fz(z1, Zz)fzz(iz) dz,dz; dz,
bN 7, Y7 Zy by

_ O(bX/ZLJrLZ)

(where K (u) is the univariate kernel) by a change of variables to ©, = (z, —rp,, (21, 22))/bn
with Jacobian bi,z. For the second integral, we partition Zﬁ by = Zq \ Zl[w,l into sets

Zbe s P=1 2kt — 1, in which 1 < Ly, < L; components of z; are in the bound-
ary region. Each Zf by, p is partitioned further into sets Zl by T = 1,...,2%, in which

0 < Ky, < L1, components of z; are near the lower boundary, L, — K1, are near the up-
per boundary, and the remaining L; — L1, components are in the internal set. Hence,
if we assume, without loss of generality, that the first K, components of z; are near the
lower boundary, the next L, — Ky, are near the upper boundary, and the remaining
components are in the internal set, then

—rpy (21, 22) - N
b2 ./Z/Z\z /ZK(“)( bz D= ) fz(z1,22)fz,(22) dzp dz1 d2
2 1 2

C / /21 11+bN /211,K1,+b1v /ZL¢1,1<1,+1
— ﬁ e
by Jzy )z 04 Z11,Ky, Zu1,Ky,+1—bN

/Zul,Llp /Zu1,L1p+1—bN /Zul,Ll—be ﬁ ) (211 — 211 2
K — -1
1
zut,Ly, —bN Ly, 410N by 2y by
Lip 2 2 2 L
(mp) [ AU — “ull () 1\ 2
< T1 xpo(220 ) T ko)
1=Ky, +1 N I=Ly,+1

2 — 1oy (21, 22) \ 2 ~ -
% K;MZ)(%) fZ(ZlaZZ)fZ2(ZZ) d22 le dZZ-

After a change of variables to t, = (z, — rp, (21, 22))/bn, with Jacobian blL\,2 we have by

. . —2L+Ly+L
analogous argument as above that this term is O(b,, THtMey Because Lip>1, we
have, by combining the results,

Elan,u(Yi, Zi, Zii, Zo)*] = O(by" ). (C.60)

SteP 3D (Equation (C.50)).
An analogous argument gives

Elan . (Vi, Zi, Z1j, Z2)?] = O(b5 ). (C.61)

This finishes the derivation of the bounds on the second moments of the kernel of the
V -statistic.
Now we turn to the proofs of equalities (C.41)-(C.46).
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StEP 3E (Equation (C.41)).
For the first term,

VN
W/L,l —Up=
N(N —1)(N —2)
) ) (C.62)
X Z (an,w(Yi, Zi, Zij, Zok) — eNu(Yi, Zi))
ik
so that
E[(Wa1 — Up)’]
N 3> Ellanw(Yis Zis Zyj, Zok) — en (Vi Z0))
NZ(N—l)Z(N 2)2 N,[.L 2] 124 1]1 2k N,;.L 2] ]
iFjEk ] Fk
X (aN,M(f/i/, Zi, Ly, Logr) — CN,,u(f/i/, Zn)].
This expression can be simplified using
Elan,.(Yi, Zi, le, Zy)] = (C.63)
Elen,u(Yi, Z)] = (C.64)
E[aN /.L(Yl) Zi, Zl], ZZk)|Y1, Zi ] =CN /.L(Yla Zi), (C.65)
Elan,u(Yi, Zi, Z1j, Zog)an,u (Vi Zirs Zajr, Zox)| Zok | =0, (C.66)
Elan,u(Yi, Zi, Z1j, Zo)an,u Vi, Zirs Zrj, Zo)| Z1j] =0, (C.67)
Elan,u(Yi, Zi, Z1j, Zo)an,u (Vi Zir, Zrj, Zow )\ Zaj, Zox ] =0. (C.68)
Therefore,

E[(aN,M(f/i, Zi, Z1j, Zok) — eNu(Yi, Z)))
x (an,uVirs Zits Zijr, Zog) — eNu Vi, Zin)) ] =

ifi£i,j#j,k#k by (C.63)and (C.64),ifi=1i, j# ', k # k' by (C.65),if i £, j#J,
k =k’ by (C.66), andif i #i', j=j/, k # k' by (C.67), and if i # ', j = j/, k = k' by (C.68).
Using this, we obtain

E[(W 1 Uu)z]

N 5 5 2
= NAN — 1N — 27 > El(an.u(Yi, Zis Zhj, Zog) — N (Yis Z0))]
ik

. N
N2(N —1)2(N —2)?

Z E[(an,u(Yi, Zi, Z1j, Zok) — en,pu(Yis Zi))
i kA

x (an,u(Yi, Zis Zvj, Zow) — en,u(Yis Z))]

(C.69)
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N N
N2(N —1)2(N —2)2

Z E[(aN,M(f/i, Zi, Z1j, Zog) — eNu(Yi, Z)))
ik AT

x (an,u(Yi, Zis Zvjr, Zok) —en (Y, Z))]-

Because Elan, . (Y;, Zi, Z1j, Zou Vi, Zi = cn,u(Yi, Zi), we have Elay ,(Y;, Z;, Zyj,
sz)CN,M(f’i, Z)Hl = E[ch,L(f’i, Z)?] so that by the bounds on the second moment of
an,u(Yi, Zi, Z1j, Zok), given in (C.47)—(C.50),
- ~ 2
E[(an,u(Yi, Zi, Zvj, Zoi) — en,w(Yi, Z1))7]
=E[(an,u(Yi, Zi, Z1j, Zog)*] — Elen,u(Yi, Zi)?]
<E[(an,.(Yi, Zis Z1j, Zo)?]
=0(by")-
Furthermore (note that E[aN,M(f/i, Zi, Z]j, ZZk)aN,M(f/,-, Z;, Z1]', Zo)] =
EW(Ez(lan,u(Yi, Zi, Z1j, Z2)))*1 > 0),
E[(an,u(Yi, Zi, Z1j, Zok) — eN,u(Yi, Z)))
X (aN,M(f/i, Zi, Lyj, Lojr) — enu(Yi, Z))]
=E[an,.(Yi, Zi, Z1j, Zog)an,u(Yi, Zi, Z1j, Zog)) | — Elen (Vi Z)?]
<Elan, (Y, Zi, Z1j, Zok)an,u(Yi, Ziy Z1j, Zowr)]

and

Elan,u(Yi, Zi, Z1j, Zor)an,u(Yi, Zi, Z1j, Zop) ]

1 Y~
= 2L ]E[”(le’ Zo1) YiY{v(Z1j, Zokr)
N
e (£ 10w (2 2o\ e (Zi = Tow (g Zoge)
by by

x (2 Zy) = oy (Zas ZZk))M((Zij Zhy) = oy (Z1j, sz/))ﬂ]

S —rpy (Z1j, Zok)
by

1 / 7 ()
— b2|M|+2LE|:V(le’ Zok) EYZ[YK K (
N

Z —rpy(Z1j, Zokr)
by

x ((Z3; Zo) = 1oy (Zajs Za)) (24 Zoge) = 1oy (Zaj, sz'))“]

= p2lul+2L ]E[”(Zlf’ Z2k)/?i?i/”(zlj, Zokr)
N
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o KW Zi — 1oy (Z1j, Zok) KW Zi — 1oy (Z1j, Zogr)
bN bN

x ((Z1; Zow) = 1oy (Zajs Za)) (24 Zoge) = 1oy (Zaj, sz'))“}

because both expectations are nonnegative. By Assumptions 4.1 and smoothness, this is
bounded by

bCz’lLE[K(M)<Zi —VbNb(le, ZZk))K(M)<Zi _rbN;ZU, sz')>:| < byt
N N

by a change of variables to ¢ = (Z; — 1, (Z1;, Zox))/bn with Jacobian b@ and Assump-
tion 5.1. By interchanging the roles of j and &, we obtain a bound of the same order for
the third term on the right-hand side of (C.69).

Combining these results, we find

E[(W,1 —U?* = 0(N"2b5) + O(N~bk) = o(N~1bH) (C.70)

so that by the Markov inequality, the first term in the projection remainder (C.40) is
O, (N~V2p 112y,

SteP 3F (Equation (C.42)).
For the second term of the projection remainder (C.40), we have by the Cauchy-
Schwarz inequality,

E[en,u(Yi, Z0)?]
1 - Zi—rpy(z1, 22)
< | / / (21, 2 )’Y~K(“)<N—)
b,vaJ’Z‘“‘ [( 7, )7, b bn

2
x (24 25) = 1oy (21, 22))" f2,(21) f2,(22) dz de) }

1 - Zi —rpy(21,22)
< —5—-E IY'IZ(/ / v(z1, 22) ‘K(“)(N—>‘
bjva’LzW [ l 7 Z1| | by

2
x |((21 25) = 1oy (215 2))* | 2, (21) f 2, (22) A2y de) ]

—rpy (21, 22)
b2L Bz [(fzz le KW( 3 )

by
E(|?i|2|z,~)}

=pr b2L / (/zz /zl

2
fz,(z21)fz,(22) dz d22>

2
J2,(z21)f2,(z2) dz; de) fz(2)dz

K('u)( rbN(ZlaZZ))
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by Assumptions 4.1 and smoothness. By a change of variables t = (Z — 14, (21, 22))/bn
with Jacobian b%, we conclude that

E[en,u(Yi, Zi)*] = O(by"). (C.71)
Therefore,

E[U2] =E[en (Vi Z0)*] = O(by")

so that the second term of the projection remainder is O, (N~ 1b7L/ 2)

STEP 3G (Equations (C.43)-(C.46)).
The other terms of the projection remainder can be bounded using (C.47)-(C.50).
For the third term (note E[ay . (Yi, Zi, Z1;, Zax)]1 # 0), by (C.47)~(C.50),

N —
E[|W,2l] < ‘/_(N El|an,u(Yi, Zis Z1iy Zoi)|]

N-—-1
“_(N L VEllan u(Fi, Zi, 211, Za0) ]

— O(N_l/sz[L+L2/2)

so that term is Op(N™ 1/Zb_LJrLZ/z) In the same way, by (C.47)-(C.50), the fourth

term of the remainder is OP(N‘I/sz,LJFL‘/Z). For the fifth term (note ay . (Y;, Z;, Z1,
ZZJ) = 0)’

NZ(N — 1)

Bw2,] ="

Elan o (Yi, Zi, Z1j, Z2j)*] = O(N3bF)
so that term is OP(N‘3/2b;,L/2). Finally, the sixth term (note Elan, . (Yi, Zi, Z1;,
Z51)1 4 0) is by a similar argument as for the third term and by (C.47)-(C.50), O, (N~1/2 x
bl_\,L). This is the largest term in the projection remainder.

This finishes the proof of

Wy =U, +0,(N"12b 5. (C.72)

Note again that the remainder is smaller if we redefine the kernel estimators. In that
case, the sixth term of the projection remainder is 0.

STEP 4 (Asymptotic Distribution).

The fourth step in the proof is the derivation of the asymptotically normal distribu-
tion of the projection U,,. In particular, we show that Uy is asymptotically normal and we
obtain the variance of that distribution. We show that U, /by also converges to a normal
distribution for |u| > 1 so that U, = O,(by) if |u| > 1. Because W in (C.36) is a linear
combination of the ¥, that are asymptotlcally equivalent to the U,, if a rate condition is
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met, W is asymptotically equivalent to Uy under that rate condition. Define

UN i = L+\M|/ / v(z1,22) YK(“)(M>

by
x (7 Z/z) — 1oy (21, 22)) f7,(21) f2,(22) dz1 d 22
so that
N (Vs Zi) = N i — ELYN i)

We have

1 I Zi — T (Z > Z. )
N0, = —L/ / v(z1, 22) K’K(#)le(zl)fzz(zz)dzl dz,.
by Jz, )z, bn

The integration region Z; x Z; can be partitioned into a set where all components of z;
and z; are in the internal region, Z{’ by X Zé, by and its complement, Z; x Z, \ Zi by X
74, . We define

ON

1 =~ Zl' — 21 Zz' — 2
UN,0,i0 = /[ /1 v(z1, Zz)’YiK1< lb >K2< ;)
by Lypy YLy N N

X fz,(z21)fz,(z2)dz1 dzy

and
| X
Vo, = N IXZE(I#N,O,L',O —E[¥n,0,i0])-

We apply the Liapounov central limit theorem for triangular arrays that requires

N2EllYn.0,i0 — El¥n,0..01P)?
N3Var(¢y,0.i0)

and a sufficient condition is that E[|y 0.;0/"] < oo for m =1, 2, 3. By a change of vari-
ablesto #; = (Z1,—z1)/by and i, = (Z5; — z2) /by with Jacobians bi,] and bﬁz, respectively,

[¥n0,i00"

/ / < L L= Zu11<t”§_1+Z1zi—Zl1z)
U Z/lg bN bN

7 Zyi —
8 1—[1<1+ i — Zu2 <14 21;b Zzzz)
N

x v(Z1; — baty, Zoi — by ) YiK (1)Ko ()

m

X fz,(Z1; —bNt1) f7,(Zp; — by ) dty diy
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/ / ( L Zui = Zull<tll§_1+zlli_zlll)
U Zx{z bN bN

1—[ ( L Zai = 15t215_1+221i_2121)
by by

x [V(Z1; — byt Zoi — by )| - |Yil - |[Ki(1)] - |Ka(1p)]
m
X fz,(Z1; —bNt) fz,(Z2i — bntp) Aty dtz)

]ll Zu]l

by the Cauchy-Schwarz inequality. Because max{—1,1 +

ZJII;—NZ[}[}, j=1,2, if and only if zj1 + by < jli — bth[ < zyjl — bN, by Assumptions 4.1

} <ty <minfl, -1 +

and 5.1, and smoothness, we obtain
l¥w,0,i01™ < CIY;|™ (C.73)

and E[|Y|?] is finite by Assumption 4.1. Therefore, the condition of the Liapounov theo-
rem holds.
The above expressions also show that for almost all Zy;, Z,;,

UN.0.0.0 = Y(Z1i, Z2i) Yif 2,(Z10) f2,(Zap),

and by (C.73), E[/ , ;o] converges to the corresponding expectation by dominated
convergence. The conclusion is that Uy ( has the same asymptotic distribution as

1 Y N
—= > AW(Zui, Zo)) Yifz,(Z11) f2,( Zai)
o= | 2 (C.74)
—E[v(Z1, 2)) Y f2,(Z1)f2,(Z2)]}.

We still have to derive the stochastic order of

U = i, E 2
\/—Z UN0,i1 — ElWN,0,i1])

with the integration region in ¢y ,; 1, thatis, Z; x Z, \ Zl by X Z’ v such that at least
one component of z; or z; is in the boundary region. We partition Zl x Znp\ Z1 by % Zé by

into subsets Z5 ypr=1,...,21 po=1,...,282, min{p;, pp} > 1, and in

Lbn, pi Zl,bN,Pz
each suchset,0 <Ly, <L1,0< Ly, <Ly, min{Ly, L1, }>1components of z; and z,
are near the boundary. We take, without loss of generality, Z{ byl = z by and z5 byl =
ZI 2.6y SO that we exclude the set with p; = p, = 1, because in that set, all components are

in the internal region. For j =1, 2, each Zf by p 1s partitioned further into sets Z2

LbN, Py’
Lip, . .
ri=1,...,2 '7j inwhich 0 < K jrj < L irj components of z; are near the lower boundary,
Ljy; — K1y, are near the upper boundary, and the remaining L; — Ljp, components are

in the internal set. Without loss of generality, we assume that the first K, components
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of zj are near the lower boundary, the next L, — K, are near the upper boundary, and
the remaining components are in the internal set, j = 1, 2. Therefore,

Zi—rpy (21, Zz))

v(z1, Zz)/f’iK<
by

. m __ | _—_
[¥N,0,i,1l —‘ Tl
2 X ]\ l,bNX 2,bN

m

X fz,(z1)fz,(z2)dz1 dz,

— v(Z1
— L I I 2
by Jzxzn\2l, <25,

X fz,(z21)fz,(z2) dzy de)

zp1+by 212Ky, FON [ Zu2 Ky +1
SIS [ e
b z Zuz,K2,2+1—bN

pL P2 11 n 2121 12K2r2

2y, 22, Ly, +17bN Zu,L,—bn  pzntby
e . (C.75)
z L, +tbN  Jzn

K<Zi_rbN(Zla22)>‘
by

u2,Lyp, ~ON V2L, +1tbN
/Zz,uq,l +bn fzu1,1<1,]+1 me,Llp] /‘Zul,L1p1+1bN
21Ky, Zul Ky, +17bN ZuLy,, ~bN Y 2Ly, w1tbN
Klr
Zul,Lq —bn ! Z
i
/ |v<zl,z«2)||Y|]"[ (b— 1)‘
zn,L,+bn N
Lip, Ly
Zyi — zni Zyi — zu

X l_[ ICU(T—i-l 1_[ K o

1=K, +1 N I=Lyp, +1 N

K2r1 L2p2

Zoii — 21 Zoii — 2yl

xnmz,(T—1 [T [ =5—=+1

=1 N I=Kp, +1 N

L,
Zoii — 231
X l_[ Ko (T [2,(21)fz,(z2) dz1 dz,
N
Z=L2p2+1
By a change of variables to t1; = (Z1;; — z1;)/bn, l = L1, + 1, L1 and to; = (Zy; — z21)/bn,
. . L—Lyp —L,
I=L,p, +1, Ly withJacobian by, "' "2, we have

m z121+bN
RLED ) I)S m<L1p1+L2p2>f
p1 P2 1N La
/'21,2K2,2+b1v /‘ZL¢2,K2,2+1 /zuz,szz /1 /1 /Z/,/H-bzv
212Ky, Zuz,K2,2+1—bN ZuZ,LZFZ_bN -1 -1Jz
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/Zl,lKlrl +bn /Zuuq,] +1 /Zul,Llp] /1
211Ky, Zul Ky, +17bN ZutLy,, —bn /-1
2 L 7
i — Zuil Z'l'_Zl‘l
/ H [T 1282wl g <py < 2020y
by bn
j=1I=Ljp +1

x [v(zi1, ..., Z1L1y, > 1Ly 10 = DNOILy, 1155 21,10 — BNTIL,

2005y 220, s L2 1y, +1,i —ONBL, 415 --s 21,0 — OB, | Y]
) P2 P2

o Z11i — zni e Z1i — zZni
X ]‘[ K < ! 1) I /cll<7’b +1)‘
1=K, +1 N
2r1 L2p2
8 l—[ ( 20i — 2121 1) 1—[ IC21< 2zzb Zu01 +1>'
1=K, +1 N
L L
X l_[ |K1i(t1)| 1_[ |Kai(t2)]
l=L1p]+1 I=L2p2+1

X fz(z115 s 21y, 5 21,1y 41,0 = BNILy, 415 -5 21,1, — BNTIL)
X fzy(2215 -5 220y, 5 22,1y, +1,i = DNB2Ly, 41505 22,150 — DN DOL,)

dzyy---dzig,, dog,, 41+ dig,
m

dzy - dzg,,, dior,, 41+ diog,

In this integral, the function v takes only values in the support Z, and this function and
the kernel functions are bounded by smoothness and Assumption 5.1 so that

[¥n,0,i11"

=CIVI" D202 it iToy m()

pr p2 1nnn

Klrl Llpl
Zyi —zin Zyi — ziu
=1 1=K1rl +1
2r1 L2p2
Zyji — 21y ) Zoji — Zy1
x H <7 1 1_[ Kol ==—22 41
l=K2r2+1 bN

142,L2P2

z101+bN 212Ky, TON - (202K +1 2Ly, 1
2121 212Ky, 22Ky, +17bN z —by /-1
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/ /Zl 11+bN /Zl,lklrl +bn /Zul,Kl,l +1 /Zu.l,Llpl /1

z1n 211Ky, Zul Ky, +17bN ZulLy,, ~bv /-1
/ fzi(z11, s 21ny, 5 2Ly, 410 — DNOLy, 415 -0 Z1Ly,i — DNGLY)

-1
X fz,(2215 -5 22y, 5 £, Lo +1,i = DNBLy, 415 -5 22,15, — DND2L,)
m

dzyy---dzig,, doyg,, 410+ dig, dzoy - dzor,, Aoz, 410+ dt2L2> .

Lip +L
Because the density is bounded, the integral is bounded by Cb,, 152, Moreover, be-

cause the kernel has support [—1, 1]* and is bounded on that support, we have that

Klrl Llpl
Zii—z Zii—z
I ICU( 1zzb n 1) I Ku( Ulb ni 1)‘
I=1 N 1=K, +1 N
KZrl L2p2
Z V4 Zoji —
« [k < 2zzb o) 1) I IC2,< zub 2l | 1)'
I=1 N 1=Ky, +1 N
Klrl Llpl
<C[[W@u=Zui<zu+2bn) [] 1zm—2bn < Zui < zi)
I=1 1=Ky, +1
Kor, Lyp,
< [T < Zaui <z +2b8) [ 12z — 26w < Zoti < zu).-
=1 1=K2,~2+1
Therefore,
Klrl
m< OV YN S ] Wam £ Zui < 2+ 2b8)
p1 p2 112 =l
Ly,
x [] Wam—2bn < Zui < za1r)
l:K]r1+1
K2r1 L2p2
< [[Wam = Zyi <z +2b8) [ Wzuar = 2bn < Zoii < zuan),
=1 1=K2,-2+1

and because E[|Y*|Z = z] is bounded on Z and the density of Z is bounded, we have,
because L1, + Ly, >1form=1,2,3,

E[l¢n,0,i,11™] = O(bn).
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By the Liapounov central limit theorem, Uy, /by converges in distribution and hence
Uo1 = Op(bn). (C.76)

STEP 5 (Ignoring Higher Order Terms).

The final step is to show that U, is asymptotically negligible if || > 1. Note that
if |u| > 1, then the integrand in ¢y , ; is 0 if z; and z, are both in the internal region.
Hence, we can take the integration region such that at least one component of either z;
or z; is in the boundary region:

1 oy (21, 22)
YN, uil™ = L/ R L

—/ V(21 22) YK(M)<Z
by M Jaysanal, <z, by

m

x ((z1 25) = 1oy (21, 22))“ f2,(21) f2,(22) dz1 d 23

Al Zi — 1oy (21, 22)
by

—_ v(z
=\ ,
by Il szzl\Z{’bNxZi

x| (2] 25) = rpy (21, Zz)llmle (z1)fz,(z2)dzy dlz)

< (%/ v(z1, KW(—Z r”N(Z]’ZZ)>'
by Lyx TS XT

by
X [z7,(z1)fz,(z2)dz; de) .

We obtained a bound on the right-hand side in (C.75). Therefore, by the Liapounov cen-

tral limit theorem, converges in distribution so that if |u| > 1, then

* by
Uy = 0,(by). (C.77)

By (C.33) (linearization), (C.34) (bias), (C.72) (projection), (C.76) (boundary remain-
der), and (C.77) (NIP remainder), we have that

VN —0) =

||M2

N
— n(ho(Z1i, Zog)) — 6
NN - 2((0 17> Zak)) — 0)

N (on

Z{_h (ho(Z) Yif2,(Z1) f2,(Z2)

:7 (C.78)
—Eyy [ﬁ (ho($)) Y f2,(Z1) 2, (Zz)] }

Op(vNlhnip,s — hol?) + O(VNBR) + 0, (NTIbYE) + 0, ().
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The first term on the right-hand side is a ' -statistic that is asymptotically equivalent to

| N
— Y {(Eln(ho(Z1i, Z2)) — 0) + Eln(ho(Z1, Z2)) — 0)}.
VN3

(]
Proor oF LEMMA A.24. Using Lemma A.14, the assumptions imply that
. In(N) \ '/ '
sup  |g(w, x) — g(w,x)| = 0p(<(—2)> + ij> =o0,(N™™). (C.79)
weW,xeX N - bN

For 1/4 < 6 < 1/4s, we can find an 7 > 1/4 such that this holds. Using the definitions
preceding the statement of the lemma, we have, by adding and subtracting terms,

B (p,0) — B (p, 0) = (B (p, 0) — BT™) (C.80)
- By —8"™) (C.81)
- (B —2™) (C.82)
+(Bg™ = &) + (B — &™) + (B - ™)

+ (@ = B (p, 0).

The result then follows if we can show that the sum of (C.80), (C.81), and (C.82) is
0,(N~1/2). Define

G (O (B (w)), D71 (Fx (x)); p)

&“™(w, x) = s — = ,
be( P (Fw (w)) e (P (Fx (x)))

om (P (Fy (w)), @7 (Fx (x)): p)

wW (w> x)_ 1,4 1 5
be( P (Fwr (w)))de(P ! (Fx (x)))

and
om (P (Fy(w)), @7 (Fx (x)): p)
wy (w,x)=

$e(OF (Fiy (0))de(P (Fx (x)))
Then, using these definitions, we can write the sum of these three components as
(B™(p,0) — BS™) — (B5™ — ™) — (B —3°™)
N N

1 A ~
= mzzg(%%)[mcm(%xj) — 0™ (W, X))]
i=1 j=1
1 N N
- <5 2 28 Wi Xp[ow Wi, X)) = o™ (Wi, X))]
i=1 j=1

N N
1 A
— 72 2 2 8 Wi Xpox (W, X)) — 0™ (Wi, X))
i=1 j=1



Supplementary Material Assortative matching 69
1 N N
=7 2_ 2 8 Xp[oT W, X)) — o (W, X))
=1 j=1

1

(VVI’X) Cm(I/I/;7X)_wcm(I/I/l’X )]

§Wi, X[ (W, X)) — dw (W, X )]

1 N N
Tl
N N
ZZ

N N
—ZZZ (Wi, Xp[ox W, X)) — oW, X))]

N N
ZZ gW, Xj) — gW, Xp][@™ (W, X)) — o™ (W, Xj)]  (C.83)
i=1 j:

N

ZZg(VVl,X)

i=1 j=1

(C.84)
x [0 (Wi, X)) — ow(W;, X)) — dx (Wi, X)) + o™ (W, X))].
It remains to be shown that both (C.83) and (C.85) are o ,(N~1/2).
Now define
-1 1.
k(Z], 22) — d)C(qul' (Zl)’ CI)C (2_21)9 p) SO that
Dc( P (21)) - be(Pe (22)) (C.85)

M (w, x) = k(Fy (w), Fx (x)).
By a second order Taylor expansion, we have

oM (w, x) — 0™ (w, x)

ok A
= (?—Zl(FW(w),FX(x))(FW(w) — Fy (w))

k R
+ ‘9—(Fw<w>, Fx(0) (Fx (x) — Fx(x))

1%k .
+ 5 7= (Fw (w), P () (B (w) — Fw (w))’
o7z1

1 Zk _ N 2
n E—g(FW(w), Fx(x))(Fx (x) — Fx (x))

1 %k

372925 (W W), Fx(0) (Fw (w) = Fr (w)) (Fx (x) = Fx (x)

with Fy(w) and Fx(x) intermediate values. By Lemma A.3, it follows that for any
0 <6 <1/2, sup, |Fx(x) — Fx(x)| = 0,(N~?) and sup,, |F (w) — Fy(w)| = 0,(N~?). In
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combination with the fact that |#*k/dz3|, |9*k /dz3, and |3°k 3z, 9z| are bounded, this
implies that

"Cm(w x) CIII(,LU7 x)
ok A
= a—zl(FW(w),FX(x))(FW(w) — Fy (w)) (C.86)

k .
+ &_ZZ(FW(w)’ F)((x))(FX(x) —Fx(x)) + Op(N_l/z)_

The same argument implies that
awoux)—afmamx>=52(HMw»FyudKﬁww»—quw)+aAN‘”%
and
ax@mx)—afmamxy=gZ(FWuw,FXu»ﬂﬁXuo—chm)+opuv*”y

Substituting in these results, it follows that (C.85) is 0, (N —1/2y,
Equation (C.86) also implies, by Lemma A.3, that

O™ (w, x) — 0™ (w, x) = op(N_1/4).
In combination with (C.79), this implies that (C.83) is also 0, (N —1/2y, O

Proor or LEMmMA A.25. The proof of this lemma makes use of an application of Theo-
rem A.3. Using the notation of that theorem, we have Z, =W, Z, =X, Y = (Y, 1),

h(w, x) = (g(w,x) 'fWX(w,x)> ’

Jwx (w, x)
and
n(h(w, x)) = Z;wa; 0 (w, x) = g(w, x) - (W, x).

In terms of this notation, we can write this in the form of Theorem A.3:

B %mmZthx>ZZthx>

i=1 j=1 i=1 j=1

We also have

1 1
an | m(w,x) cm | fwx(w,x) cm
%(h(w,x))_ w0 o™ (w, x) = gt » ™ (w, x)
hy(w, x)? fwx (w, x)

and, hence,

fir (w)fx ()

on =
%(h(w, X)) ¥ fw (w) fx (x) = fwx (w, x)

. (y _g(w5 x)) : wcm(w} X),
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which is mean zero. Therefore, by the result of Theorem A.3, we have
B — B™(p, 0) = NZ (hWi, X)) Yifw W) fx (Xi)

—E[ (h(W, X)) yYfW(W)fx(X)]

+o (Nfl/z)
W ! cm
- Zf;VW(X()V]VCX;)) (Y — Wi, X)) - 0™ (W;, X))

_E[fW(W)fX(X)
fwx(W,X)
+o0p(N71?)

_ Jw (W) fx (Xi)
Z fwx (Wi, Xi)

(Y =g, X)) - 0™ (W, X)}

(Yi— g, X)) - 0™ (W;, X))
+0P(N71/2)

N
1
:ﬁzlpgm Yi’I/I/iaXi)+0p(N_1/2)—{—op(N—l/Z). -

ProoOF OF LEMMA A.26. Using the definition of k(zy, z;) in (C.85) and the Taylor expan-
sion in the proof of Lemma A.24, we have

B -3 = 2ZZg(W,,X)

i=1 j=1

ok A
X T(FW(I’Vi)aFX(Xj))(FW(I’Vi) — Fyw (W)

ZZZg<WuX>

i=1 j=1
%k — — A 2
X E(FW(VVi)aFX(Xj))(FW(W/i) — Fy(W))".
1
By Lemma A.3, sup,, |Fw (w) — Fy(w)| = op(N*S) for all 6 < 1/2, and using the fact that
the second derivatives of k(z1, z;) are bounded, this implies

, 1 LY
B - = 5 D> g X, )—(FW(W) Fx (X)) (Fw (Wy) — Fy (W)
i=1 j=1

+ op(N_l/z).
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Inspection of the definition of ey (w, x) shows that ey (w, x) = %(Fw(w), Fx(x)) and,
therefore,

A

1 L& A
B =8 =<7 D D8 Xpew Wi, Xj) (Fw (W) — Fiw (W)
i=1 j=1
+o,(N72)

1 N N
=7 22 2 2 8V Xpew (Wi, Xp) (1W< Wo) = Fiw (W)
i=1 j=1k=1

~12
+0,(N7V3).
This is, up to the 0,(N~1/?) term, a third order V -statistic,
BN —gM =V +0,(N71/?),

where

N N N
1
V= mzzzlp(ma){h W/j’Xj’ Wi, Xio),
i1 j=1 k=1

with

P(wi, X1, wa, X2, w3, x3) = g(wi, x2)ew (wi, x2)(L(w3z < wy) — Fy (wy)).
Define

Y1 (w, x) =E[¢(w, x, Wa, X5, W3, X3)],

po(w, x) =E[¢ (W, X1, w, x, W3, X3)],

P3(w, x) =E[p(W1, X1, Wa, X2, w, X)),
and

0 =E[y(W1, X1, Wa, X2, W3, X3)].
Using V' -statistic theory, this I/ -statistic can be approximated as

N

1
V=sy ;{(ww,-, Xi) — 0) + (v2(Wi, Xi) — 0) + (v3(W;, Xi) — )}

+ op(N_l/z).
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Note that E[¢/(wq, x1, ws, x2, W, X)] = 0. Hence, 6 =0, 1 (w, x) =0, and »(w, x) = 0.
Thus,

1 _
V=52 93 X +o0p(N712)

i=1

1 N
= NZ//g(s, Dew (s, )(1(W; < 8) — Fw () fw () fx () dsdt + 0, (N1/2)
k=1

N
1
= 2 W (Y Wi Xi) + 0p(N7112),
i=1
as required. O

The proof of Lemma A.27 is entirely analogous to that of Lemma A.26 and, therefore,
is omitted.

Proor orF LEMMA A.28. Define

P (w, x) =g(w, x) - 0™ (w, x),

Y1(w) =E[p(w, X)] =E[g(w, X) - 0 (w, X)],
and

Yo(x) =E[y(W, )| =E[gW, x) - 0" (W, x)].

Then, by the VV-statistic projection theorem, given as Theorem A.4 in Appendix A, it fol-
lows that

N

1
8 = B(p, 0) = 1 ) _{ (41 (W) = BT (p, 0)) + (¥2(Xi) — B (p, 1))}

i=1
+ op(Nfl/z)

N
1
= 2 VT (Y Wi Xi) + 0p(N71/2).
i=1
PrOOF OF THEOREM A.4. Define
$(z1,22) = (¥ (21, 22) + ¥(22, 21)) /2.
Then

N N
V=) > &(Z.Z)/N

i=1 j=1
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is a V' -statistic with a symmetric kernel. In the notation of Lehmann (1999),
of = Cov(d(Zi, Z)), b(Zi, Zy))

for i, j, k distinct, which simplifies to o7 = o/4. Therefore, by Theorems 6.1.2 (with a =
2) and 6.2.1 in Lehmann (1999), the result follows. O
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