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1 Introduction

This is a simple application of Theorem 3. We have two series of coefficients.
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These are the multiscale Wold coefficients for an AR(1,t,t+1).
We also consider the following series of coefficients:
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where j∗ = log2(8). These look like the coefficients of an AR(1,t,t+8) where the
notation AR(1, t, t + 8) denotes an autoregressive process of order 1 on a grid
t, t+ 8, t+ 16, . . .. (TO BE FORMALIZED).

The idea is to generate a process xt with wold coefficients given by
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where λ captures the relative contribution of each process from scale j > j∗.
Then
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The simulation of the white noise is trivial.
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1.1 Results

We have 3 parameters, fix λ = 1, ρx = 0.9, ρ = 0.9. Figure :simulation2Pers
shows the autocorrelation function of the NEWPROCESS (blue line). In each
panel we superimpose the autocorrelation function of an autoregressive process
of order one with autoregressive parameter = 0.95 (Panel A) and = 0.97 (Panel
B).

Figure 1: Simulation Results. 2 persistent processes

• The first part of the autocorrelation is well approximated by an AR(1)
with rho = 0.95, but this process undershoots the long-lags;

• The long-lags part of the autocorrelation is well approximated by an AR(1)
with rho = 0.97, but this process overshoots the short-lags.

• overall tension of an AR(1) model to focus more on short lags vs long lags

• If you fit an ARMA(1,1) to the multiscale process (so that now you have
the same number of parameters), it gives the same results as in Panel A
(red line), ie. it favors the short-lags. So it seems this process is difficult
to replicate with ARMA(1,1) (but what about other processes?)
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1.2 Comparison with OTT

In OTT we were assuming an autoregressive component at a specific level of
persistence. Here we have that the sum of components at multiple scales is an
autoregressive process.

3



1.3 Special cases

When ρx = 0 then
xt = WN +AR(1, t, t+ 8)

WN is a white noise process with unit variance.
Figure 2 plots the autocorrelation of the process xt (top panel, blue line with

cross) and the autocorrelation of the aggregated process xt + . . .+xt−7 (bottom
panel, blue line with cross). We pick φ = 0.9. We report the case where the

coefficients β
(j)
k have been rescaled so to deliver a variance equal to 1. Since the

persistnet AR(1) is comparable in volatility to the white noise, we see that it is
somehow hidden at fine scale.

Figure 2: Simulation Results

So, in this case, it is possible to find parameters for an ARMA(1,1) to repli-
cate the autocorrelation function of xt and its aggregated version! See line with
diamonds which overlaps with line with cross.

• Is this bad or good news (it means that the asset pricing implications of
OTT are exactly the same as the one of LRR with ARMA11?)

• Is it possible to formally show this link between xt and ARMA(1,1)?
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2 Conclusion
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