A Online Supplement

A.1 Proofs

The notation employed here is taken from Subsection Lemma is preparatory
for the proof of Theorem [I}

Lemma A.1. Let € be a unit variance white noise. The Hilbert space H.(g) decom-
poses into the orthogonal sum H,(e) = @52 RI7'LE, where

R/ILR = {Zb eV eH(e): b e R}

and, for any 7 € N and t € Z, 5§j) s given by eq. @

Proof. H(e) is a Hilbert subspace of L?(Q, F,P), equipped with the inner product
(A,B) =E[AB] for all A,B € L*(Q, F,P). We begin with showing that the scaling
operator R is well-defined, linear and isometric on H;(e).

Consider any X = >72  ape; in He(e), that is || X[|* = X772 ap < +00. Then,

1 & +oo
R = Za =23 ay Z =3 e = Ix)?
p=0 p=0

and this quantity is finite. As a result, R is a well-defined (and bounded) oper-
ator. The linearity of R is immediate. To prove that R is isometric, take any

X = oakci—k, Y =, obreip in Hy(e). By the white-noise properties of €,

<RX, RY> = Z \/§ % Z aszJ 2pJ + - Z aL2p+1 2p+1

As aresult, R is an isometry on H,(g) and the Abstract Wold Theorem (i.e. Theorem
1.1 in |Nagy et al.|2010) applies.

The Abstract Wold Theorem supplies the orthogonal decomposition H;(e) =
Hi(e) © Hyle), where

+00 +oo
e) = \RM(e), Hile)=EPR LY
j=0 j=1
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and L} = H;(e) © RH(g) is called wandering subspace.

In particular, we show that 7:[t(€) is the null subspace. Indeed, the subspaces
R/H;(e) are made of linear combinations of innovations €; with coefficients equal to
each others 27-by-27:

271

R/H,(e) = Z Zet i | €Hule): P eR

k=0

As aresult, H, () can just include variables as 377 ce,, with ¢ € R. These elements
belong to H.(g), hence Y p  ¢* is finite and this is possible just in case ¢ = 0. As a
result, Hy(e) = {0} and M, () = H,(e).

We now focus on the subspace H, (). As the orthogonal complement of RH,(x) is
the kernel of the adjoint operator R* (see, for example, Theorem 1, §6.6 in Luenberger
1968), we determine R*. Specifically, R* : H;(e) — H.(e) is such that

a2k+a2k+1
E ap€¢—g E — = Et—k-

Indeed, R* is well-defined and the relation (RX,Y) = (X, R*Y’) holds for any X =

S oo bneron, Y =307 aker—y in Hi(e), due to the white noise nature of e:

+oo +oo bLh

(RX,Y) ZZ (et k) ZbL J Z ka2k+a2k+l

h=0 k=0
+o00 400

Qo + a N
=3 2’““ (eromerr) = (X, RY).
h=0 k=0

As for the kernel of R*, we prove that
ker R* = {Zd 8,5 2k — 5t—2kz—1) c Ht(é‘) . d](:) S R} .

Take any element of H;(e) of the kind X = >, d](:)(i‘ft_gk — &4_9k—1) for some
square-summable sequence of real numbers {d,(:)}k. Such X can be rewritten as
X =377 s anei—p, with ag,1 = —agy for all k € Ny, that is agy +askg+1 = 0. Therefore,
by the expression of R*, we realize that R*X = 0. Thus,

oo
{Z A (e1—on — cr_opr) € Hele) : d\V R} C ker(R*). (23)
k=0
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Conversely, consider X = Y 7° ape;—p in ker(R*). Since R*X = 0 in the L?-norm,
> (agr + agpr1)? = 0. As a consequence, ag,yq = —ag; for any k € Ny and we can
k=0 + + y

write X =Y 7, dg) (E4—ok — E1—2k—1) With d,(:) = agi. As a result, also the converse

inclusion in holds and

LR = ker(R*) = {Z peV, e Hie): b e R} .

In addition,
+oo
RLR = {Z bPe® e Hi(e): b e R}
k=0

and, for any j € N,

+o0
RIILR = {Z bWl e Hile): b e R} .
k=0

As the case with j € N can be derived by induction, we focus on RLE and show that
+oo
RL} = {Z df) (€t—ak + Et—ah—1 — E1—ah—2 — E1—ak—3) € Hyi(e) : d;(f) € R} . (24)

Consider any Y € RLR. Since Y is the image of some X € LR, there exists a

square-summable sequence of real numbers {d/,(;)hC such that

= oo (1)
d
X = Zd;(gl) (Et—aok — Et—2k—1) , Y = j— (Et—ak + Et—aho1 — Et—ah—2 — E1—ak—3) -

As aresult, RCP is included in the set in (24). Vice versa, takeany Y = > 77 d,(f) (Et—apt
E1—dk—1 — Et—ak—2 — Er—4k—3) for some square-summable sequence of coefficients {d,(f)} k-
Then Y belongs to RLE too, because it is the image of X = > 77 \/ﬁdff) (Et—ok —
€¢_ak_1), which belongs to LR. Therefore, the characterization in is assessed. [

Proof of Theorem

Proof. By applying the Classical Wold Decomposition to the zero-mean, weakly sta-
tionary purely non-deterministic process x, we find that z; belongs to the Hilbert
space H;(€), where € is the unit variance white noise of classical Wold innovations of

x. Importantly, H;(e) orthogonally decomposes as in Lemma . By denoting g§j )
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the orthogonal projections of z;; on the subspaces R/~ LR we find that x;, = Z;; gfj ),
where the equality is in the L?-norm. Then, by using the characterizations of sub-
spaces R77ILR for any scale j € N we find a square-summable sequence of real
coefficients {5,(; )}k such that eq. @D holds. As a result, we are allowed to decompose
the variable z; as in eq. .

We now show i). As we can see in eq. (), the process € is an MA(27 — 1) with
respect to the fundamental innovations €. In addition, the subprocess {55&21}%2 is

weakly stationary. Indeed, since € is a unit variance white noise, for any k € Z,

) ) 2 .
2i—1_1 2i—1_1 271

. 2 1 1
E |:<81(5J—)k2j> } = 2_3E Z Et—k2i—i — Z Et—k2i—2i-1—4 =95 Ee] =1
=0 =0 0

7=l

Thus, E[(sgi)mj)ﬂ is finite and it does not depend on k. Moreover, E[sii)mj] = 0 for any

k € Z and the expectation does not depend on k. Finally, we analyse cross-moments
in the support St(j) = {t — k27 : k € Ny}. By taking h # k,

27—1-1 27i-1-1
g0 @0 1_1lg S cmi— S frmai
t—h2i S t—k27 2] t—h29—i t—h27—-21—1—4
i=0 =0

2i-1_1 2i-1_1
E Et—k2i—l — E Et—k2i—2i—-1] ]
1=0 =0

1 27—1_12i-11 2711211
= E{ E E E [e4_noi—i€i—kai—1] — E E [e1—noi—i€i—koi—2i-1-4]
i=0  1=0 =0 =0
27—l_12i-11 27—1_12/-11
- E [5t—h2j—2f—1—i5t—k2]'—l] + E [5t—h21—2j—1—i5t—k2j—2f—1—l] }
i=0 =0 =0 I=0

Since h # k, the sets of indices {h27,... h2/ +2/ —1} and {k27,... k27 +27 — 1} are

disjoint and so the last sums are null. Therefore, E[aii)mj Egi)k2j] =0 for all h # k.

As a result, {z—:ii) 1oi Jkez 18 weakly stationary on St(j ) and it is a unit variance white
noise.
G)
' t—k2J
orthonormal when £ varies, the component g§] ) has a unique representation as in eq.
(8). Thus, the coefficients B,(j ) are uniquely defined and, clearly, Dot Dol ,(f N2 is

finite.

We now turn to ii). For any fixed scale j € N, since the variables ¢ are

In order to find the explicit expression of coefficients 5,(; ), we exploit the orthogonal
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decompositions of H;(e) at different scales J € N:
J .
Hi(e) = R/ Hi(e) o PRITLY

We call 7r,§j ) the orthogonal projection of x; on the subspace R7H;(¢) and we proceed
inductively.

We start by the first decomposition z; = ﬂt(l) + gt(l) coming from scale J = 1,
namely H;(e) = RH,(e) ® LE. By the definitions of elements in RH;(e) and L}

described in Lemma [A.T] we set

+

—+00
Z 1) Et=2k + Et—(2k+1) _ Z CI(:) (-2 + Et—(2k+1)) 5
V2 k=0

k=

Zﬁk €t gk Zd 5t72k_5t72k71)

for some sequences of coefficients {cg)}k and {d(l)}k, or equivalently {fy]gl)}k and

{Bkl)}k, to determlne in order to have x; = 7r§ ) —I—g Where we set \/_c = 7,(;) and
\/_ d . The expressions above may be rewritten as
+oo
= { (c,(j) + d,ﬂ})) Er ok + ( W d,ﬁ”) 5t_2k_1} .
k=0

However, from the Classical Wold Decomposition of x,

“+oo

Ty = E {aoret—ok + Qori16—2k—1}
k=0

with the same fundamental innovations ;. By the uniqueness of writing of the Clas-
sical Wold Decomposition, the two expressions for x; must coincide. As a result, c,(gl)

and d,(fl) are the solutions of the linear system

{ c,(cl) + d,(:) = Qugp

C;(.Cl) - d;(gl) = O2k+1,
that is,
(1) Ok + Qg1 (1) Qop — Q2k41
% =T g ' ==

45



and, in particular, we find

(1) Ok + Qopy 5(1) Qi — Qg

Vi _T’ PSS \/§

Next, we focus on the scale J = 2. We exploit the decomposition of the space
RH:(e) = R*H;(e) ® RLY that implies the relation ) =7 4 @ We follow
the same track as in the previous case, by using the features of elements in R>*H,(¢)
and in RLR and, finally, by comparing the expression of 7T,£2) - gt(2) with the (unique)

writing of 7r§1) that we found before. Since

+oo
@) (2) Et—ak T Et—(4k+1) T Et—(4k+2) T Et—(4k+3) (2)
T —Z%c 9 ’ Zﬂk t 4k=
k=0

by solving a simple linear system we discover that

(2) Ok + Q4py1 + Qqpyo + Qgpy3 (2) Ok + Qqpy1 — Qg — Olqfy3
fyk; - 2 I ﬁk; - 2 .

At the generic scale J = j, we retrieve the expressions of ﬁ,(j ) and 7,(5 ) of eq. and

(11)), where ij ) is defined in eq. (10).
Finally, we show iii). First, when ¢ is fixed, ]E[gfj ) gt(l)] = 0 for all j # [ because ggj )

()

and g, are, respectively, the projections of x; on the subspaces R7~'LF and R'71 LR

U withm € No. Clearly,

that are orthogonal by construction. Now, consider any ¢
gt(]_ )ij belongs to RI~'LR ., but, by the definition of g7 we can write

gt m27 Zﬂj) 7 —(m+k)2 ZB t 1(217

where Blg =0if K=0,...,m—1and 5%) = lij) if K =m+ k for some k € Ny. As
a result, gt belongs to RJ ILR too. Similarly, at scale [, taken any n € Ny, it is
easy to see that gt o belongs to Rl 1LR. Hence, the orthogonality of such subspaces

guarantees that E[gij)my gfl)ml} =0 for all j # [ and m,n € Nj.
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As for the general requirement on E[gt( pgt q] for any j,l € N and p,q,t € Z,

400 400

j 0]
E [gt pgt Q] Zzﬁ [tjp k20 €t—g- h2’]

k=0 h=0
+00 400 2i-1_19l-11

WZZB l) uz% ; ]E[gtfpfkmfuﬁ?t—q—ml—v}

—E [5t—p—k2j—u€t—q—h2l—2l*1—U] —E [gt—p—ij—2j*1—u8t—q—h21—v}

+E |:€t—p—k2]'—21'—1—ugt—q—h21—21*1—v] }

and so
+00 +00 27—1_19l-1_1
©) (4) g j !
i) = S A Y z{ kY bu— ke )

—v(p—q+k:2ﬂ+u—h2’—2*1—v)
—y(p—q+ k2 + 277 fu— b2 —v)
+7(p—q+k:2j+2j_1+u—h2l—21_1—1})},

where coefficients ﬁ,gj), ﬁ,(f) do not depend on ¢ and v denotes the autocovariance
function of €. After the summations over u,v and k, h, the one remaining variables

are j,l,p — q. In other words, E[gt pgt q] depends at most on j,[,p — q. O]

Proof of Theorem

Proof. First, we show that any process gW is well-defined. Indeed, by using the
()

moving average representation of each g,”’ with respect to the innovations on the

support St(j ) and the definition of detail processes €9) | we have

+o0 27 —1

Zﬂk D =D 2 B0 e Zﬁ’)%éjj

Jgt hs (25)
k=0 =0 h=0

2]

where h = k27 + i, k = LQ—JJ andi=h—2 L—J Condition ensures the square-
summability of the coefficients and so each gV is well-defined.
In addition, the process x is well-defined because of Conditions ) and .

()

According to the latter, the components g,”’ are orthogonal to each others at different
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scales for fixed t € Z. Therefore,

(o) |-Ee (6] -SE (0a0s)

7=1 h=0

which is finite because of . In consequence, the process x is well-defined.
Now we show that x is weakly stationary, with zero mean. We already observed
that | [2?] is finite and not dependent on ¢. In addition, since the processes gl have

zero mean, E[z;] = 0 for any ¢ € Z. Finally, take p # ¢. Then,

7j=1 =1

E [l't_pl't_q] =K

As ]E[g,fj_ )pggq] are dependent at most on j,l and p — ¢ (see e.g. the computations in
the proof of Theorem , E [x;_px—,] depends at most on the difference p —¢. As a
result, x is weakly stationary, with zero mean.

By taking the sum over scales j € N in eq. , we obtain the decomposition
of x;, with respect to the process € stated in eq. . Clearly, x is purely non-

deterministic. O

Proposition A.1. The time series

Qk 1
Rz, = Z L and Rxa = 7 (T4 + @41)

have spectral density functions, respectively,
2 [ A 2 [ A
fr(A\) = 2cos B fz(2X) and fr.(A) = 2cos B fz(N),

where f(N) is the spectral density function of x;.

Proof. Define the time-invariant linear filter A(L) = Y77, oy, L", so that 2, = A(L)e;.
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Since > ;7 |an| < 400 and the spectral density function of &, is f.(\) = 1/2,

=A™ 0

E o, e—zh)\

First, consider Rxzy. As Y o, oy i = 2> lan| < 400, we have

+oo 400

Ak ) 1 1 QO k
R =[S 5= 5 23 S ek - )
\/§ 27T 27‘(‘ 2
k=0 h=0 k=0
= o io f anou; {cos Nk —h)) + cos(A(2k — 2h + 1)) + cos(A(2k — 2h — 1)) }
2
h 0 k=0

= — ZZahak cos(2A(k — h)) {1 + cos(A\)} = 2 cos? (%) f=(2X).

hOkO

Now consider Ryz;. The spectral density function in the claim follows from

fr.(N\) = (" +e ™) f.(N) = % {(1 4 cos(\))? +sin®(\)} (M)

7

A.2 Forecasting from the persistence-based decomposition

We provide the formulas for conditional expectation and variance of a process x =
{2}, that has Classical and Extended Wold Decompositions given by eq. and
(9), respectively. We consider the filtration generated by the white noise € = {&:},.,
assuming that the innovations ¢; are independent.

Fix p € N. The conditional expectation at time ¢ of x,;, is characterized by an
off-set of the classical Wold coefficients, namely E¢[z1,] = > 5o cpiper—pn. Notably,

such offset is inherited by the Extended Wold Decomposition of E¢[z:,]:

+o0o 400

IH—P E :E :ﬂk’p t k279

7j=1 k=0
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where, for any j € N and k € Ny,

21—1_1 2i—1_1

Gy _ L 3 3
= Okoj4ity — Ooj19i—14
6}67 — k2J+i+p k27427 —1+i+p
: 2 =0 =0

Therefore, once the Extended Wold Decomposition of z; is known, p-step ahead
forecasts do not require a large additional effort because they are driven by the detail
processes € too and coefficients ﬁ,(f; are easily computed.

As to the conditional variance, the properties of the Classical Wold Decomposition
ensure that Var,(z4,) = o + -+ + ag_l. By Theorem [2| the coefficients oy, can be
obtained from the scale-specific ﬁl(cj ) and so Var,(z¢4,) can be derived directly from

them. For example, Var,(z:41) = af = (3272, B9 )V/20)2,
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