
A Online Supplement

A.1 Proofs

The notation employed here is taken from Subsection 2.1. Lemma A.1 is preparatory

for the proof of Theorem 1.

Lemma A.1. Let ε be a unit variance white noise. The Hilbert space Ht(ε) decom-

poses into the orthogonal sum Ht(ε) =
⊕∞

j=1 R
j−1LR

t , where

Rj−1LR
t =

{
+∞∑
k=0

b
(j)
k ε

(j)

t−k2j ∈ Ht(ε) : b
(j)
k ∈ R

}

and, for any j ∈ N and t ∈ Z, ε
(j)
t is given by eq. (6).

Proof. Ht(ε) is a Hilbert subspace of L2(Ω,F ,P), equipped with the inner product

〈A,B〉 = E [AB] for all A,B ∈ L2(Ω,F ,P). We begin with showing that the scaling

operator R is well-defined, linear and isometric on Ht(ε).

Consider any X =
∑∞

k=0 akεt−k in Ht(ε), that is ‖X‖2 =
∑∞

p=0 a
2
p < +∞. Then,

‖RX‖2 =
1

2

+∞∑
k=0

a2b k
2
c =

1

2

+∞∑
p=0

a2b 2p
2
c +

1

2

+∞∑
p=0

a2b 2p+1
2
c =

+∞∑
p=0

a2p = ‖X‖2

and this quantity is finite. As a result, R is a well-defined (and bounded) oper-

ator. The linearity of R is immediate. To prove that R is isometric, take any

X =
∑∞

k=0 akεt−k, Y =
∑∞

h=0 bhεt−h in Ht(ε). By the white-noise properties of ε,

〈RX,RY 〉 =
+∞∑
k=0

ab k
2
c√

2

bb k
2
c√

2
=

1

2

+∞∑
p=0

ab 2p
2
cbb 2p

2
c +

1

2

+∞∑
p=0

ab 2p+1
2
cbb 2p+1

2
c

=
+∞∑
p=0

apbp = 〈X, Y 〉.

As a result, R is an isometry on Ht(ε) and the Abstract Wold Theorem (i.e. Theorem

1.1 in Nagy et al. 2010) applies.

The Abstract Wold Theorem supplies the orthogonal decomposition Ht(ε) =

Ĥt(ε)⊕ H̃t(ε), where

Ĥt(ε) =
+∞⋂
j=0

RjHt(ε), H̃t(ε) =
+∞⊕
j=1

Rj−1LR
t
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and LR
t = Ht(ε)	RHt(ε) is called wandering subspace.

In particular, we show that Ĥt(ε) is the null subspace. Indeed, the subspaces

RjHt(ε) are made of linear combinations of innovations εt with coefficients equal to

each others 2j-by-2j:

RjHt(ε) =


+∞∑
k=0

c
(j)
k

2j−1∑
i=0

εt−k2j−i

 ∈ Ht(ε) : c
(j)
k ∈ R

 .

As a result, Ĥt(ε) can just include variables as
∑∞

h=0 cεt−h with c ∈ R. These elements

belong to Ht(ε), hence
∑∞

k=0 c
2 is finite and this is possible just in case c = 0. As a

result, Ĥt(ε) = {0} and Ht(ε) = H̃t(ε).

We now focus on the subspace H̃t(ε). As the orthogonal complement of RHt(x) is

the kernel of the adjoint operator R∗ (see, for example, Theorem 1, §6.6 in Luenberger

1968), we determine R∗. Specifically, R∗ : Ht(ε) −→ Ht(ε) is such that

R∗ :
+∞∑
k=0

akεt−k 7−→
+∞∑
k=0

a2k + a2k+1√
2

εt−k.

Indeed, R∗ is well-defined and the relation 〈RX, Y 〉 = 〈X,R∗Y 〉 holds for any X =∑∞
h=0 bhεt−h, Y =

∑∞
k=0 akεt−k in Ht(ε), due to the white noise nature of ε:

〈RX, Y 〉 =
+∞∑
h=0

+∞∑
k=0

bbh
2
c√

2
ak〈εt−h, εt−k〉 =

+∞∑
k=0

bb k
2
c
ak√

2
=

+∞∑
k=0

bk
a2k + a2k+1√

2

=
+∞∑
h=0

+∞∑
k=0

bh
a2k + a2k+1√

2
〈εt−h, εt−k〉 = 〈X,R∗Y 〉.

As for the kernel of R∗, we prove that

ker(R∗) =

{
+∞∑
k=0

d
(1)
k (εt−2k − εt−2k−1) ∈ Ht(ε) : d

(1)
k ∈ R

}
.

Take any element of Ht(ε) of the kind X =
∑∞

k=0 d
(1)
k (εt−2k − εt−2k−1) for some

square-summable sequence of real numbers {d(1)k }k. Such X can be rewritten as

X =
∑∞

h=0 ahεt−h with a2k+1 = −a2k for all k ∈ N0, that is a2k+a2k+1 = 0. Therefore,

by the expression of R∗, we realize that R∗X = 0. Thus,{
+∞∑
k=0

d
(1)
k (εt−2k − εt−2k−1) ∈ Ht(ε) : d

(1)
k ∈ R

}
⊂ ker(R∗). (23)
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Conversely, consider X =
∑∞

h=0 ahεt−h in ker(R∗). Since R∗X = 0 in the L2-norm,∑∞
k=0(a2k + a2k+1)

2 = 0. As a consequence, a2k+1 = −a2k for any k ∈ N0 and we can

write X =
∑∞

k=0 d
(1)
k (εt−2k − εt−2k−1) with d

(1)
k = a2k. As a result, also the converse

inclusion in (23) holds and

LR
t = ker(R∗) =

{
+∞∑
k=0

b
(1)
k ε

(1)
t−2k ∈ Ht(ε) : b

(1)
k ∈ R

}
.

In addition,

RLR
t =

{
+∞∑
k=0

b
(2)
k ε

(2)
t−4k ∈ Ht(ε) : b

(2)
k ∈ R

}
and, for any j ∈ N,

Rj−1LR
t =

{
+∞∑
k=0

b
(j)
k ε

(j)

t−k2j ∈ Ht(ε) : b
(j)
k ∈ R

}
.

As the case with j ∈ N can be derived by induction, we focus on RLR
t and show that

RLR
t =

{
+∞∑
k=0

d
(2)
k (εt−4k + εt−4k−1 − εt−4k−2 − εt−4k−3) ∈ Ht(ε) : d

(2)
k ∈ R

}
. (24)

Consider any Y ∈ RLR
t . Since Y is the image of some X ∈ LR

t , there exists a

square-summable sequence of real numbers {d(1)k }k such that

X =
+∞∑
k=0

d
(1)
k (εt−2k − εt−2k−1) , Y =

+∞∑
k=0

d
(1)
k√
2

(εt−4k + εt−4k−1 − εt−4k−2 − εt−4k−3) .

As a result, RLR
t is included in the set in (24). Vice versa, take any Y =

∑∞
k=0 d

(2)
k (εt−4k+

εt−4k−1−εt−4k−2−εt−4k−3) for some square-summable sequence of coefficients {d(2)k }k.
Then Y belongs to RLR

t too, because it is the image of X =
∑∞

k=0

√
2d

(2)
k (εt−2k −

εt−2k−1), which belongs to LR
t . Therefore, the characterization in (24) is assessed.

Proof of Theorem 1

Proof. By applying the Classical Wold Decomposition to the zero-mean, weakly sta-

tionary purely non-deterministic process x, we find that xt belongs to the Hilbert

space Ht(ε), where ε is the unit variance white noise of classical Wold innovations of

x. Importantly, Ht(ε) orthogonally decomposes as in Lemma A.1. By denoting g
(j)
t
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the orthogonal projections of xt on the subspaces Rj−1LR
t , we find that xt =

∑∞
j=1 g

(j)
t ,

where the equality is in the L2-norm. Then, by using the characterizations of sub-

spaces Rj−1LR
t , for any scale j ∈ N we find a square-summable sequence of real

coefficients {β(j)
k }k such that eq. (9) holds. As a result, we are allowed to decompose

the variable xt as in eq. (5).

We now show i). As we can see in eq. (6), the process ε(j) is an MA(2j − 1) with

respect to the fundamental innovations ε. In addition, the subprocess {ε(j)
t−k2j}k∈Z is

weakly stationary. Indeed, since ε is a unit variance white noise, for any k ∈ Z,

E
[(
ε
(j)

t−k2j

)2]
=

1

2j
E

2j−1−1∑
i=0

εt−k2j−i −
2j−1−1∑
i=0

εt−k2j−2j−1−i

2 =
1

2j

2j−1∑
i=0

E
[
ε2t
]

= 1.

Thus, E[(ε
(j)

t−k2j)
2] is finite and it does not depend on k. Moreover, E[ε

(j)

t−k2j ] = 0 for any

k ∈ Z and the expectation does not depend on k. Finally, we analyse cross-moments

in the support S
(j)
t = {t− k2j : k ∈ N0}. By taking h 6= k,

E
[
ε
(j)

t−h2jε
(j)

t−k2j

]
=

1

2j
E

[2j−1−1∑
i=0

εt−h2j−i −
2j−1−1∑
i=0

εt−h2j−2j−1−i


·

2j−1−1∑
l=0

εt−k2j−l −
2j−1−1∑
l=0

εt−k2j−2j−1−l

]

=
1

2j

{ 2j−1−1∑
i=0

2j−1−1∑
l=0

E [εt−h2j−iεt−k2j−l]−
2j−1−1∑
i=0

2j−1−1∑
l=0

E [εt−h2j−iεt−k2j−2j−1−l]

−
2j−1−1∑
i=0

2j−1−1∑
l=0

E [εt−h2j−2j−1−iεt−k2j−l] +
2j−1−1∑
i=0

2j−1−1∑
l=0

E [εt−h2j−2j−1−iεt−k2j−2j−1−l]

}
.

Since h 6= k, the sets of indices {h2j, . . . , h2j + 2j − 1} and {k2j, . . . , k2j + 2j − 1} are

disjoint and so the last sums are null. Therefore, E[ε
(j)

t−h2jε
(j)

t−k2j ] = 0 for all h 6= k.

As a result, {ε(j)
t−k2j}k∈Z is weakly stationary on S

(j)
t and it is a unit variance white

noise.

We now turn to ii). For any fixed scale j ∈ N, since the variables ε
(j)

t−k2j are

orthonormal when k varies, the component g
(j)
t has a unique representation as in eq.

(8). Thus, the coefficients β
(j)
k are uniquely defined and, clearly,

∑∞
j=1

∑∞
k=0(β

(j)
k )2 is

finite.

In order to find the explicit expression of coefficients β
(j)
k , we exploit the orthogonal
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decompositions of Ht(ε) at different scales J ∈ N:

Ht(ε) = RJHt(ε)⊕
J⊕
j=1

Rj−1LR
t .

We call π
(j)
t the orthogonal projection of xt on the subspace RjHt(ε) and we proceed

inductively.

We start by the first decomposition xt = π
(1)
t + g

(1)
t coming from scale J = 1,

namely Ht(ε) = RHt(ε) ⊕ LR
t . By the definitions of elements in RHt(ε) and LR

t

described in Lemma A.1, we set

π
(1)
t =

+∞∑
k=0

γ
(1)
k

εt−2k + εt−(2k+1)√
2

=
+∞∑
k=0

c
(1)
k

(
εt−2k + εt−(2k+1)

)
,

g
(1)
t =

+∞∑
k=0

β
(1)
k ε

(1)
t−2k =

+∞∑
k=0

d
(1)
k (εt−2k − εt−2k−1)

for some sequences of coefficients {c(1)k }k and {d(1)k }k, or equivalently {γ(1)k }k and

{β(1)
k }k, to determine in order to have xt = π

(1)
t + g

(1)
t , where we set

√
2c

(1)
k = γ

(1)
k and√

2d
(1)
k = β

(1)
k . The expressions above may be rewritten as

xt =
+∞∑
k=0

{(
c
(1)
k + d

(1)
k

)
εt−2k +

(
c
(1)
k − d

(1)
k

)
εt−2k−1

}
.

However, from the Classical Wold Decomposition of x,

xt =
+∞∑
k=0

{α2kεt−2k + α2k+1εt−2k−1}

with the same fundamental innovations εt. By the uniqueness of writing of the Clas-

sical Wold Decomposition, the two expressions for xt must coincide. As a result, c
(1)
k

and d
(1)
k are the solutions of the linear system{

c
(1)
k + d

(1)
k = α2k

c
(1)
k − d

(1)
k = α2k+1,

that is,

c
(1)
k =

α2k + α2k+1

2
, d

(1)
k =

α2k − α2k+1

2
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and, in particular, we find

γ
(1)
k =

α2k + α2k+1√
2

, β
(1)
k =

α2k − α2k+1√
2

.

Next, we focus on the scale J = 2. We exploit the decomposition of the space

RHt(ε) = R2Ht(ε) ⊕ RLR
t that implies the relation π

(1)
t = π

(2)
t + g

(2)
t . We follow

the same track as in the previous case, by using the features of elements in R2Ht(ε)

and in RLR
t and, finally, by comparing the expression of π

(2)
t + g

(2)
t with the (unique)

writing of π
(1)
t that we found before. Since

π
(2)
t =

+∞∑
k=0

γ
(2)
k

εt−4k + εt−(4k+1) + εt−(4k+2) + εt−(4k+3)

2
, g

(2)
t =

+∞∑
k=0

β
(2)
k ε

(2)
t−4k,

by solving a simple linear system we discover that

γ
(2)
k =

α4k + α4k+1 + α4k+2 + α4k+3

2
, β

(2)
k =

α4k + α4k+1 − α4k+2 − α4k+3

2
.

At the generic scale J = j, we retrieve the expressions of β
(j)
k and γ

(j)
k of eq. (7) and

(11), where π
(j)
t is defined in eq. (10).

Finally, we show iii). First, when t is fixed, E[g
(j)
t g

(l)
t ] = 0 for all j 6= l because g

(j)
t

and g
(l)
t are, respectively, the projections of xt on the subspaces Rj−1LR

t and Rl−1LR
t

that are orthogonal by construction. Now, consider any g
(j)

t−m2j
with m ∈ N0. Clearly,

g
(j)

t−m2j
belongs to Rj−1LR

t−m2j but, by the definition of g
(j)
t , we can write

g
(j)

t−m2j
=

+∞∑
k=0

β
(j)
k ε

(j)

t−(m+k)2j
=

+∞∑
K=0

β
(j)
K ε

(j)

t−K2j
,

where β
(j)
K = 0 if K = 0, . . . ,m− 1 and β

(j)
K = β

(j)
k if K = m+ k for some k ∈ N0. As

a result, g
(j)

t−m2j
belongs to Rj−1LR

t , too. Similarly, at scale l, taken any n ∈ N0, it is

easy to see that g
(l)

t−n2l belongs to Rl−1LR
t . Hence, the orthogonality of such subspaces

guarantees that E[g
(j)

t−m2j
g
(l)

t−n2l ] = 0 for all j 6= l and m,n ∈ N0.
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As for the general requirement on E[g
(j)
t−pg

(l)
t−q] for any j, l ∈ N and p, q, t ∈ Z,

E
[
g
(j)
t−pg

(l)
t−q

]
=

+∞∑
k=0

+∞∑
h=0

β
(j)
k β

(l)
h E

[
ε
(j)

t−p−k2jε
(l)

t−q−h2l

]
=

1√
2j+l

+∞∑
k=0

+∞∑
h=0

β
(j)
k β

(l)
h

2j−1−1∑
u=0

2l−1−1∑
v=0

{
E
[
εt−p−k2j−uεt−q−h2l−v

]
− E

[
εt−p−k2j−uεt−q−h2l−2l−1−v

]
− E

[
εt−p−k2j−2j−1−uεt−q−h2l−v

]
+ E

[
εt−p−k2j−2j−1−uεt−q−h2l−2l−1−v

]}

and so

E
[
g
(j)
t−pg

(l)
t−q

]
=

1√
2j+l

+∞∑
k=0

+∞∑
h=0

β
(j)
k β

(l)
h

2j−1−1∑
u=0

2l−1−1∑
v=0

{
γ(p− q + k2j + u− h2l − v)

− γ(p− q + k2j + u− h2l − 2l−1 − v)

− γ(p− q + k2j + 2j−1 + u− h2l − v)

+ γ(p− q + k2j + 2j−1 + u− h2l − 2l−1 − v)

}
,

where coefficients β
(j)
k , β

(l)
h do not depend on t and γ denotes the autocovariance

function of ε. After the summations over u, v and k, h, the one remaining variables

are j, l, p− q. In other words, E[g
(j)
t−pg

(l)
t−q] depends at most on j, l, p− q.

Proof of Theorem 2

Proof. First, we show that any process g(j) is well-defined. Indeed, by using the

moving average representation of each g
(j)
t with respect to the innovations on the

support S
(j)
t and the definition of detail processes ε(j), we have

g
(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j =
+∞∑
k=0

2j−1∑
i=0

β
(j)
k δ

(j)
i εt−k2j−i =

+∞∑
h=0

β
(j)

b h

2j
cδ

(j)

h−2jb h

2j
cεt−h, (25)

where h = k2j + i, k =
⌊
h
2j

⌋
and i = h− 2j

⌊
h
2j

⌋
. Condition (13) ensures the square-

summability of the coefficients and so each g(j) is well-defined.

In addition, the process x is well-defined because of Conditions (13) and (14).

According to the latter, the components g
(j)
t are orthogonal to each others at different
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scales for fixed t ∈ Z. Therefore,

E
[
x2t
]

= E

(+∞∑
j=1

g
(j)
t

)2
 =

+∞∑
j=1

E
[(
g
(j)
t

)2]
=

+∞∑
j=1

+∞∑
h=0

(
β
(j)

b h

2j
cδ

(j)

h−2jb h

2j
c

)2

,

which is finite because of (13). In consequence, the process x is well-defined.

Now we show that x is weakly stationary, with zero mean. We already observed

that E [x2t ] is finite and not dependent on t. In addition, since the processes g(j) have

zero mean, E[xt] = 0 for any t ∈ Z. Finally, take p 6= q. Then,

E [xt−pxt−q] = E

[(
+∞∑
j=1

g
(j)
t−p

)(
+∞∑
l=1

g
(l)
t−q

)]
=

+∞∑
j=1

+∞∑
l=1

E
[
g
(j)
t−pg

(l)
t−q

]
.

As E[g
(j)
t−pg

(l)
t−q] are dependent at most on j, l and p− q (see e.g. the computations in

the proof of Theorem 1), E [xt−pxt−q] depends at most on the difference p − q. As a

result, x is weakly stationary, with zero mean.

By taking the sum over scales j ∈ N in eq. (25), we obtain the decomposition

of xt with respect to the process ε stated in eq. (16). Clearly, x is purely non-

deterministic.

Proposition A.1. The time series

Rxt =
+∞∑
k=0

αb k
2
c√

2
εt−k and Rxxt =

1√
2

(xt + xt−1)

have spectral density functions, respectively,

fR(λ) = 2 cos2
(
λ

2

)
fx(2λ) and fRx(λ) = 2 cos2

(
λ

2

)
fx(λ),

where fx(λ) is the spectral density function of xt.

Proof. Define the time-invariant linear filter A(L) =
∑∞

h=0 αhL
h, so that xt = A(L)εt.
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Since
∑∞

h=0 |αh| < +∞ and the spectral density function of εt is fε(λ) = 1/2π,

fx(λ) =
∣∣A (e−iλ)∣∣2 fε(λ) =

∣∣∣∣∣
+∞∑
h=0

αhe
−ihλ

∣∣∣∣∣
2

1

2π

=
1

2π


(

+∞∑
h=0

αh cos(hλ)

)2

+

(
+∞∑
h=0

αh sin(hλ)

)2


=
1

2π

+∞∑
h=0

+∞∑
k=0

αhαk cos(λ(k − h)).

First, consider Rxt. As
∑∞

k=0 |αb k2 c| = 2
∑∞

h=0 |αh| < +∞, we have

fR(λ) =

∣∣∣∣∣
+∞∑
k=0

αb k
2
c√

2
e−ikλ

∣∣∣∣∣
2

1

2π
=

1

2π

+∞∑
h=0

+∞∑
k=0

αbh
2
cαb k

2
c

2
cos(λ(k − h))

=
1

2π

+∞∑
h=0

+∞∑
k=0

αhαk

{
cos(2λ(k − h)) +

cos(λ(2k − 2h+ 1)) + cos(λ(2k − 2h− 1))

2

}

=
1

2π

+∞∑
h=0

+∞∑
k=0

αhαk cos(2λ(k − h)) {1 + cos(λ)} = 2 cos2
(
λ

2

)
fx(2λ).

Now consider Rxxt. The spectral density function in the claim follows from

fRx(λ) =

∣∣∣∣ 1√
2

(
e0 + e−iλ

)∣∣∣∣2 fx(λ) =
1

2

{
(1 + cos(λ))2 + sin2(λ)

}
fx(λ).

A.2 Forecasting from the persistence-based decomposition

We provide the formulas for conditional expectation and variance of a process x =

{xt}t∈Z that has Classical and Extended Wold Decompositions given by eq. (4) and

(5), respectively. We consider the filtration generated by the white noise ε = {εt}t∈Z
assuming that the innovations εt are independent.

Fix p ∈ N. The conditional expectation at time t of xt+p is characterized by an

off-set of the classical Wold coefficients, namely Et[xt+p] =
∑∞

h=0 αh+pεt−h. Notably,

such offset is inherited by the Extended Wold Decomposition of Et[xt+p]:

Et [xt+p] =
+∞∑
j=1

+∞∑
k=0

β
(j)
k,pε

(j)

t−k2j ,
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where, for any j ∈ N and k ∈ N0,

β
(j)
k,p =

1√
2j

2j−1−1∑
i=0

αk2j+i+p −
2j−1−1∑
i=0

αk2j+2j−1+i+p

 .

Therefore, once the Extended Wold Decomposition of xt is known, p-step ahead

forecasts do not require a large additional effort because they are driven by the detail

processes ε(j) too and coefficients β
(j)
k,p are easily computed.

As to the conditional variance, the properties of the Classical Wold Decomposition

ensure that Vart(xt+p) = α2
0 + · · · + α2

p−1. By Theorem 2 the coefficients αh can be

obtained from the scale-specific β
(j)
k and so Vart(xt+p) can be derived directly from

them. For example, Vart(xt+1) = α2
0 = (

∑∞
j=1 β

(j)
0 /
√

2j)2.

50


