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SIAM J. NUMER. ANAL. ? 1983 Society for Industrial and Applied Mathematics 
Vol. 20, No. 4, August 198-3 0036-1429/83/2004-0014 $01.25/0 

ON SHAPE PRESERVING QUADRATIC SPLINE INTERPOLATION* 

LARRY L. SCHUMAKERt 

Abstract. In this paper we discuss the design of algorithms for interpolating discrete data using 
C'-quadratic splines in such a way that the monotonicity and/or convexity of the data is preserved. The 
analysis culminates in an interactive algorithm which takes full advantage of the flexibility which quadratic 
splines permit. 

1. Introduction. This paper is concerned with the numerical solution of the 
following interpolation problem: 

Problem 1.1. Given points t1 < ... < t, and values {zi}', find s such that 

(1.1)~~~~~~ s(ti) =zi, i = 1 ,2 n. 

While there are many methods available for the solution of this problem, in this 
paper we are concerned only with methods which preserve the shape of the data. By 
this we mean that in those intervals where the data is monotone increasing or 
decreasing, s should have the same property. Similarly, in those intervals where the 
data is convex or concave, the same should be true of s. 

Recently, several shape preserving methods for the solution of Problem 1.1 have 
appeared (see [5]-[8], [10]-[17], and references therein). One of these methods (cf. 
[12]-[13]) -constructs s as a C1 quadratic spline with knots at the data points t1,* tn, 
and with one additional knot in each subinterval (ti, ti+), i = 1, ... , n -1. 

The purpose of this paper is to give a general treatment of the use of quadratic 
splines for solving Problem 1.1. In particular, we shall show exactly when it is necessary 
to add knots to a subinterval, and where they can be placed. We then use this 
information to describe a numerical algorithm which can be used to take full advantage 
of the flexibility which quadratic splines permit. In contrast with the previously 
published algorithms which rely on an ad hoc scheme for selecting knots, our algorithm 
allows the user to adjust their locations. 

The paper is divided into six sections. In ? 2 we examine a simple Hermite 
interpolation problem involving quadratic polynomials, which provides the basis for 
the whole paper. The general and specific algorithms are presented in ?? 3 and 4, 
respectively. We conclude with numerical examples and remarks in ?? 5 and 6. 

2. A Hermite interpolation problem. In this section we discuss a simple two-point 
Hermite interpolation problem which will be useful in solving Problem 1.1. 

Problem 2.1. Let t1 <t2, and suppose z1, Z2, S, S2 are given real numbers. Find 
a function s E C1[t1, t2] such that 
(2.1) s(ti)=zi, s'(ti)=si, i=1,2. 

The following lemma shows that in certain cases, Problem 2.1 can be solved by 
a quadratic polynomial. 

LEMMA 2.2. There is a quadratic polynomial solving Problem 2.1 if and only if 

(2.2) S1+S2 
-Z2Z1 2 t2-tl 

* Received by the editors March 30, 1982. 
t Center for Approximation Theory, Department of Mathematics, Texas A&M University, College 
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SHAPE PRESERVING QUADRATIC SPLINE INTERPOLATION 855 

In particular, if (2.2) holds, then 

(2.3) s(t) = zi + si(t-t) +(S2(tS-t1) 

is a solution. 
Proof. The proof is elementary. 0 
When condition (2.2) fails, it is not possible to solve Problem 2.1 using a quadratic 

polynomial. We now show, however, that it can always be solved using a quadratic 
spline with one (simple) knot. A quadratic spline is a function s E C1(-oo, oo) such 
that for some points x1 < x2 < * * * < xn, s restricted to each subinterval defined by the 
x's reduces to a quadratic polynomial. The x's are called the knots of the spline (for 
a detailed treatment of splines, see e.g. Schumaker [18]). 

LEMMA 2.3. For every t1 < 6 < t2, there exists a unique quadratic spline s with a 
(simple) knot at 6 solving Problem 2.1. In particular, we can write 

[A1 + B (t - t) + C, (t- ti)2 ti <t < , 
(2.4) s(t) =A2 +B2(t-$) + C2(t-_)2, _ t < t2, 

with 

Al= zl, Bl= sl, Cj= (s-sj1)2a, 
(2.5) A2=A1+B1a+C1a , B2=s, C2=(s2-.s)/2f3, 

where 

s(t) 2(z2-zi)-(asj+13S2) 

(2.6) 

Proof. It is easily checked that the function s defined in (2.4)-(2.6) is a quadratic 
spline (to check this, one must check that s and its first derivative are both continuous 
across the knot at 6). It is also easy to verify that s satisfies the interpolation conditions 
(2.1). Finally, the uniqueness of s follows from well-known zero theorems on splines 
(see e.g. [18, Thm. 4.53]). 0 

We now discuss the shape of the interpolating functions given in Lemmas 2.2 
and 2.3. First we treat the special case of Lemma 2.2. 

LEMMA 2.4. Suppose 51 * 02>?, and that (2.2) holds. Then the quadratic poly - 
nomial s in (2.3) which solves Problem 2.1 is monotone on I = [t1, t2]. Moreover, if 
51 <s 2, then s is convex on I, while if s1 > 52, then s is concave on L 

Proof. Clearly s' is linear on L It follows that s'(t) has the same sign as si and 
s2 throughout L This establishes the monotonicity assertion. The assertion about 
convexity (concavity) follows immediately from the fact that s"(t)= 
(2-s1)/(t2-t1). 0 

In the remainder of this section we suppose that (2.2) fails, and discuss the shape 
of the spline s in (2.4). Clearly a necessary condition for monotonicity of s is that 
S 21 0 2-> O. We now give a sufficient condition. 

LEMMA 2.5. Suppose thats1 * S2 2 0. Then the spline (2.4) is monotone on I = [t1, t2] 
if and only if si ' >0. This condition can also be written as 
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856 LARRY L. SCHUMAKER 

Proof. Since s' is piecewise linear, s'(t) has one sign throughout I if and only if 
5, s2, and s all have the same sign. 0 

Our next lemma deals with the convexity of s. 
LEMMA 2.6. Suppose that s5 < S2. Then the spline s in (2.4) is convex on I = [t1, t2] 

if and only if 

(2.9) 51 _ s.-'S2- 

Similarly, if S1 >s2, then s is concave on I if and only if 

(2.10) 52? S?1. 

Proof. Since 

S -5ij ti t< 

s"(t) = 
S2- 

t2_6t t2, 

the assertion is obvious. [1 
Although Lemma 2.3 shows that the two-point Hermite interpolation problem 

can be solved by a quadratic spline with one knot placed arbitrarily in the interval 
(t1, t2), it is not possible to satisfy conditions (2.9) and (2.10) for arbitrary knot locations. 
The following lemma shows exactly which knot locations lead to convex or concave 
splines. 

LEMMA 2.7. Let8 = (Z2-Z1)/(t2-ti). Then (s2-6)(sl-8)_0 implies thats must 
have an inflection point in the interval L Suppose now that (S2-8)(s1 -8) <0. Then 
the condition IS2 - 861 < IS1 - 16 implies that for all 6 satisfying 

(2.11) ti < t with =t + 2(t2 - t1)(s2 -6) (2.11) ~~~~~~~~~(52-51) 

the interpolating spline s in (2.4) satisfies 

(2.12) s is convex on I ifs 1 < S2, 

s is concave on I if s1 >S2. 

If s1s2 _ 0, then s is also monotone. Similarly, if 1S2 - 861 > I51 - 8 1, then for all 6 satisfying 

(2.13) < <t2 with t2 -4 (S2- S 

the interpolating spline s satisfies (2.12). If s1s2 _ 0, then s is also monotone. 
Proof. It is easy to check that if (S2- 8)(s1 -8) _0, then conditions (2.9)-(2. 10) 

fail, and s cannot be convex or concave on L Now for the converse, consider the case 
s1<s2 and IS2-6I<Is51j-6I. First we note that in this case t1< <t2. Now some 
computation shows that if t1 < ? ', then (2.9) follows, which by Lemma 2.6 assures 
that s is convex on L This, coupled with Lemma 2.5, shows that s is monotone when 
s1s2 _ 0. The other cases are similar. 3 

3. A general curve fitting algorithm. We now describe a general curve fitting 
algorithm for solving the interpolation Problem 1.1 using quadratic splines. 
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SHAPE PRESERVING QUADRATIC SPLINE INTERPOLATION 857 

ALGORITHM 3.1. 
1. (INPUT) 

n = number of data points 
{tl}ln, {zi}ln, data 

2. Either input or compute {si}l 
3. For i = 1 step 1 until n -1 

Use Lemma 2.2 to decide if a knot is needed in the interval Ii = [ti, ti+j], 
and insert one if needed. 
Use Lemma 2.3 to compute the coefficients of the polynomial pieces associ- 
ated with each knot. 

4. (OUTPUT) 
k = number of knots 
{x1}1, the knots 
{Ai, Bi, Ci}k, the coefficients of the polynomial pieces. 

Discussion. This algorithm produces the coefficients of a piecewise-polynomial 
representation of a quadratic spline s solving Problem 2.1. In particular, we have 

(3.1) s(t) ={AisA Bi(t -xi) + Ci(t -xi)2, x_'t <xi+1, i = 1, 2, , k. 

This is a convenient form for storing s. The values of s and its derivatives at any point 
t are easily calculated using Horner's scheme. 0 

We now discuss how this algorithm can be made to produce a quadratic interpolat- 
ing spline which preserves the shape of the data. Throughout the following discussion 
we shall use the notation Ii = [ti, ti+1] and 

ai=Zi+1 Zi, ,2 1 
ti+1 - ti 

If a knot has been inserted in the interval Ii, we denote it by (i. 
Monotonicity. Lemmas 2.4 and 2.5 show how Algorithm 3.1 can be made to 

produce a spline s which is locally monotone. In particular, to guarantee that s is 
monotone on Ii, we must first make sure that si si+1 >0. In addition, if a knot (i is 
inserted in the interval Ii, then we must also require that 

2(zi+l - zi) - (ei - ti)si - (ti+1 - isi (3.2) (ti+1-t') 

has the same sign as si and si+1. If (si-8j)(si+1-i)'> 0, in order to insure (3.2) we 
must restrict the size of si and si+1, depending on the location of (E. In particular, we 
need 

(3.3) 21zi+l - zi I k(i - ti)si + (ti+1 - 6)s+1I1. 
These conditions show how to make s monotone in the interval Ii. If the data is 

globally monotone, i.e., z1 < Z2< '... <Zn, then by selecting the slopes {si}I correctly, 
we can make s globally monotone also. 

Co-monotonicity. Often a data set will not be globally monotone, but instead 
switches back and forth between monotone increasing and monotone decreasing. 
Because of the local nature of the quadratic spline s constructed in Algorithm 3.1, 
by choosing the slopes correctly, we can make s follow the shape of the data in the 
following sense: 

(3.4) s is monotone increasing on 1i if zi < zi+1, 
s is monotone decreasing on Ii if zi > zi+1. 
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858 LARRY L. SCHUMAKER 

When s has this property, we say that s is co-monotone with the data. It is clear that 
in order to achieve co-monotonicity, we must choose the slopes to assure local 
monotonicity, and in addition, we must insure that 
(3.5) si = 0 when Si-, * Si( ? 

Convexity. Lemmas 2.6 and 2.7 can be used to make Algorithm 3.1 produce a 
spline s which is locally convex or concave in intervals Ii with (si - 5)(si,1 - Si) < 0. In 
particular, to make s convex on the interval Ii, we need only make sure that condition 
(2.9) holds, while for concavity we need condition (2.10). These conditions can be 
guaranteed by choosing the knot (i in the interval Ii, according to Lemma 2.7, i.e., 
satisfying 

(3.6) tj < 2' ti+ 2(ti+1 - ti)(si+1 -6i) if gi+1 - 45 1< Isi - 45i I, 
(Si+1 -Si) 

(3.7) t+1? +2(ti+,-t)(si-)i) <ti+1 if 1si+16i I>Isi 3i R 

respectively. If the data is globally convex, i.e., 81<82< .. <8n, then by choosing 
S <S2< .*. < Sn in such a way that s is locally convex in each subinterval, it will follow 
that s is globally convex. (A similar assertion holds for global concavity.) 

Co-convexity. A data set may switch back and forth between convexity and 
concavity. In this case, it would be desirable to make s have a similar behavior. We 
can accomplish this by making s be locally convex or concave as needed. For example, 
suppose that < ... <1 > 81+1 ... >n-,. Then by choosing the slopes such that 
51 < 52 < ' * ' < SI, S1+1 > ... > Sn - and the conditions (3.6) are satisfied for i = 
1, 2, * * *, 1- 1, while (3.7) are satisfied for i = 1+1, * * *, n - 1, we obtain a spline 
such that s is convex on [t1, tl] and concave on [tl+, tn]. In this case we say that s is 
co-convex with the data. (Note that in this example, s must have an inflection point 
in the interval [t1, t1+1]-indeed, otherwise it could not switch from convex to concave.) 

Linear segments. Sometimes a number of consecutive data points will lie on a 
straight line; e.g., we might have Al = ... = ar-1 = 8. In this case it may be desirable 
to insure that s not only goes through the data points (ti, zi), i = 1, * * *, r, but also to 
insure that s is in fact linear on [t1, tr]. This can be accomplished by choosing the slopes 
such that s1 = ... =Sr = 3- 

We conclude this section by observing two further properties of Algorithm 3.1. 
Both are due to the local nature of the quadratic spline which is being constructed. 

Adjusting one data value. If a spline fit s has been calculated for a given set of 
data {ti, Zi}n, and it is desired to change the ith data point (by changing zi and/or by 
moving ti to another point between ti-, and ti+1), then it is not necessary to recalculate 
all of the coefficients of a new spline fit. Indeed, we need only consider the interpolation 
problem on [ti-L, ti+?], and then mesh the new knots and coefficients with the ones 
we already have. 

Extending the data. There are some applications where the data comes to us in 
a continuous stream (for example, from telemetering equipment). In this case we 
cannot wait until all the data is in to perform a fit-instead we must perform a running 
fit. Algorithm 3.1 is well-suited for this task. Having computed a fit to the first n data, 
we can fit additional data without recomputing the knots and coefficients of the spline 
which has already been computed. 

4. A specific algorithm. In this section we describe a specific algorithm for solving 
Problem 2.1 using quadratic splines. The algorithm is based on Algorithm 3.1, and 
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SHAPE PRESERVING QUADRATIC SPLINE INTERPOLATION 859 

is designed to preserve the shape of the data. While it can be used as a one pass 
algorithm, it can also be integrated into an interactive package where it would serve 
as a first pass. The user then could interactively adjust the slopes and knot locations 
in order to alter the shape of the interpolating curve as desired. We say more about 
how to set up this interactive package later in this section. 

ALGORITHM 4.1. 
1. Preprocessing 

For i = 1 step 1 until n -1, 
Li [(ti+l _ ti)2 + (Zi+l - Zi)2]l/2 
Si= (zi+1 - zi)/(ti+ -ti) 

For i = 1 step 1 until n -1, 
Li = Er ZLj, where Sl, I Os,, Sri 5? Sri+l 

2. Slope calculations 
For i = 2 step 1 until n -1, 

Si = (Li-,Si-, +?Ljj)/(Li-1 +Lj). 
3. Left end slope 

s1 = (385 -S2)/2 
4. Right end slope 

Sn = (33n-1 Sn_l)/2 
5. Compute knots and coefficients 

1 =0. - 

For i = 1 step 1 until n - 1, 
if si + si+i = 23i 

j = j + 1, xi = ti, Ai = Zi, Bi = si, Ci (si+l - si)12(ti+l - ti) 
else 

a = si -8i, b = si+1 -S5 
if ab ?0 

(i = (ti+l + ti)/2 
else 

if Iat>tbI 
t = ti? + a (ti?l - tj)/(sj?j - s ) 

else 
ei = ti + b (ti+l - ti)/(si+l - si) 

.= (28i -si+?) + (si+l -si)(i - t)/(t+j -ti) 
7i = (i -Si)/(i -ti) 
j =j + 1, x= ti, Aj = zi, B1 = si, C1 = rii/2 
j = j + 1, xi e i, Ai = Zi +Si (ei _ ti) +71i (ei _ ti)2 /2 

Bj =?-, Cj =(si+j - ss)12(ti+ -(Ej). 

Discussion. The slope si at the point ti is computed as a weighted average of 8i-1 
and 8i, where the weights are taken to be the quantities Li-, and Li (which at this 
point have the lengths of the longest lines containing the chords in Ii-1 and Ii, 
respectively). In particular, if 8i = 8i_1, then si = 8i = 3i_j. The slope si is taken to be 
an average of 81 and S2. Similarly, the slope Sn is taken to be an average of 8n-l and 
Sn-1. 

The choice of knots in those intervals where they are required is made in such 
a way as to assure local monotonicity and local convexity (or concavity). In particular, 
when a = si - 8i and b = si+1 -8i satisfy ab 0 O, then we are free to choose (i anywhere 
in the interval Ii; we take the midpoint. When ab < 0, we take e to be the midpoint 
of the allowed interval (see Lemma 2.7 for the definition of this interval). Note that 
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860 LARRY L. SCHUMAKER 

in this case it may happen that condition (3.3) guaranteeing local monotonicity will 
fail. This can be corrected later in the interactive stage. 

Algorithm 4.1 is designed to produce a quadratic spline with the following 
features: 

. s is continuously differentiable. 

. s is co-convex with the data, in the sense that it has inflection points only in 
those intervals where the data transitions from convex to concave or vice versa. 

. s is co-monotone with the data with the possible exception of those intervals 
where s has an inflection point. 

We conclude this section with some remarks on how Algorithm 4.1 can be 
integrated into an interactive system in which the user has considerable flexibility in 
adjusting the shape of the interpolating spline. The general structure of such an 
interactive system is shown in the flow chart in Fig. 1. 

Adjusting slopes. The user is free to adjust the slope at each data point. In doing 
so, he should keep the following relationships between the value of si and the shape 

Call Alg. 4.1 

Adjust Slopes? Input i, s~~~~~~~~~~, 

Adj ust Knlopes? Yes Input i, 

Insert Corners? Yes Insert a corner 

No 

Yes Further Adjust? 

i Stop 

FIG. 1. An interactive curve package. 
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of s in mind: 
* A necessary condition for monotonicity on Ii- is that sisi - ?0. 
* A necessary condition for monotonicity on Ii is that sisi+ ?>0. 
* A necessary condition for monotonicity on both Ii and Ii-1 in the case where 

3i'i-1 0 is that si = 0. 
. Condition (3.3) is necessary to assure monotonicity on an interval Ii where s 

has an inflection point. 
Adjusting knots. The user is also free to adjust the location of the knot (i in each 

interval Ii where one is required. In choosing knots, he should keep the following 
facts in mind: 

(i can be chosen anywhere in (ti, ti+l) when aibi >0, where ai = si -i and 
bi = si+1 -3i. 
*i can be chosen anywhere in the interval (3.6) when aibi < 0 and bibI < jail. 

* (i can be chosen anywhere in the interval (3.7) when aibi < 0 and bibI > jail. 
Inserting corners. Suppose that for some 1, i, r, 81 = -..i. # lAi - = r. Then 

(ti, zi) is the point where the line drawn through the data points at tl,... , ti meets 
with the line through the data at ti, , tr. In some cases it may be desirable to make 
our fit s fit these lines exactly. Since Algorithm 4.1 will not produce such a fit (the 
slope at ti is an average of ji_1 and 5i), if we want a corner at ti, we must insert it 
interactively. This is a simple matter of dropping the knots in 'i-1 and Ii, and adjusting 
a few coefficients. The quadratic spline which results is now only continuous at ti, 
rather than differentiable. We can think of ti as a double knot of the spline. 

5. Numerical examples. Algorithm 4.1 and an interactive package based on the 
flow chart of Fig. 1 were prepared in FORTRAN and tested on a variety of numerical 
examples. In this section we present two typical data fitting problems to illustrate the 
flexibility of the package. 

Example 5.1. Let n = 5, and suppose the t's and z's are given by 

t 1 2 3 4 5 

z 1 2 3 2 1 

Discussion. The data and the spline s produced by Algorithm 4.1 are shown in 
Fig. 2a. Note that the slope at t3 = 3 has been chosen to be 0, and that s is co-monotone 
with the data. In Fig. 2b we show the quadratic spline which results when the slope 
at t3 is changed to 1, forcing the spline to be linear throughout [1, 3]. In this case, s 
is no longer monotone on [3, 4]. Finally, in Fig. 2c we show the quadratic spline s 
which results when we make the point t3 be a corner (or double knot). 

Example 5.2. Let n = 11, and suppose the t's and z's are given by 

t 0 2 3 5 6 8 9 11 12 14 15 

z 10 10 10 10 10 10 10.5 15 50 60 85 

Discussion. This data is taken from Akima [1]. For the results of some other 
spline fits, see [10]. The data and the spline s produced by Algorithm 4.1 are shown 
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3 3 

2 2 
a). b). 

0 1 2 3 4 5 0 1 2 3 4 5 

3 

2- 
c). 

0 1 2 3 4 5 

FIG. 2. The splines in Example 5.1. 

in Fig. 3a. The slopes selected by the algorithm are 

t 0 2 3 5 6 8 9 11 12 14 15 

s 0 0 0 0 0 .061 1.92 30.96 28.23 19.21 27.85 

The algorithm inserts knots at {7, 8.76, 10.977, 11.5, 13, 14.33}. Note that although 
the data is monotone increasing, the spline s fails to be monotone in the interval [12, 
14]. This is due to the fact that the selected slopes at 12 and 14 are too large. Also 
note the slight dip in [7, 8]. 

In Fig. 3b we show the spline which results when the slopes at 12 and 14 are 
reduced to 11 and 8, respectively. This reduction is enough to assure that (3.3) is 
satisfied, and the spline becomes monotone increasing on [12, 14]. Its shape is changed 
only slightly outside this interval. 

Fig. 3c shows the result of setting the slope at 8 to be 10. This forces the 
interpolating spline to be linear throughout the interval [0, 8]. 

6. Remarks. 
1. Algorithm 4.1 presented here can be thought of as an alternative to the method 

of McAllister and Roulier [12]-[13]. The main differences between the two are in the 
way in which the slopes and knots are selected. Their slope and knot assignments are 
based on a geometrical argument, and the quadratic polynomial pieces are constructed 
using Bernstein polynomials. Whichever algorithm is used as a first pass, the main 
idea of this paper is that there is considerable flexibility in the use of quadratic splines, 
and that this flexibility should be exploited in an interactive mode. 

2. In [12]-[13], there is some discussion of "pathological cases" where a decision 
based on comparing two numbers can make a substantial change in the shape of the 
fit. Algorithm 4.1 produces a spline fit s which depends continuously on the data. 
The location of a knot in an interval Ii may be a discontinuous function of the data. 
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100 
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0 2 3 5 6 8 9 10 12 14 15 

FIG. 3. The splines in Example 5.2. 

In particular, if (si -8i) and (si+1 -8i) are nearly the same, then the choice of a knot 
in Ii will depend on which of these is greater, and indeed, if they are equal, no knot 
will be inserted at all. Still, the final s will be nearly the same in all cases. I suggest 
that in coding the algorithm that the quantities be regarded as equal whenever they 
differ by no more than some prescribed small E-this saves adding knots where they 
really are not needed. - 

3. Fritsch and Carlson [10] have published a curve fitting algorithm based on 
cubic splines, which is capable of producing monotone fits to monotone data. It does 
not preserve convexity, however. 

4. Additional references and examples can be found in the papers listed below. 
For some unusual applications of shape preserving algorithms, see [6], [15]. 
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