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A Nonempty identified set and direct sampling

A.1 Proof for Proposition 1: Chebychev Center criterion with a single shock

Proof. Suppose without loss of generality that there are no zero rows of W: ∀i = 1, . . . , nr : ||Wi,◦|| > 0.

⇒: Let q̃ be a vector on the unit sphere. Then y = zc +
√
rq̃ satisfies ||y − zc|| = r.

Thus the identified set has a measure at least as large as:

πq

{
y

||y||
∣∣y = zc +

√
rq̃, q̃′q̃ = 1

}
.

⇐: We first show that the identified set cannot have positive measure if it imposes an equality restriction

on any element of q. Then we we use this to construct a candidate solution to the problem of finding

the Chebychev center.

Note that if the identified set has positive measure, then there exists a q such that Wq ≤ 0 and

||q|| = 1.

By means of contradiction, assume ∃i ∈ {1, . . . , nr} such that ∀q satisfying ||q|| = 1, Wq ≤ 0, and

Wi,◦q = 0. Let j denote a non-zero entry Wij . Then qj = − 1
Wij

∑
`6=j Wi`ql∀q. However, such a q

has zero π measure for continuous π, contradicting the assumption that the identified set has positive

measure. Thus, for each i there exists a q̃i such that Wi,◦q̃i < 0 and Wqi ≤ 0. By continuity, we

can also find a nearby qi such that Wqi < 0.

Now we construct, by induction, a q such that Wq < 0. Pick q such that W1q < 0 and W2q ≤
0. Let ε = δ × (−W1q) and define q̂ = [q` − δn−1ε sgn(W2,`)W2,`]` and q′ = q̂

||q̂|| . Note that

W2q
′ ∝ W2q̂ = W2q − δn−1ε

∑
` |W2,`| < 0. Also, for δ small enough, W1q

′ < 0. Now assume

that Wiq < 0 for i = 1, . . . , n and Wn+1q = 0. Proceed as before but with ε = maxi δ|Wiq|. Going

through the same argument shows that we can then also generate a q′ such that Wiq
′ < 0 for all

i = 1, . . . , n+ 1.

Thus, Wq < 0. First, this implies that q 6= 0. Second, by continuity, there exists an r̃ > 0 small

enough such that ∀u satisfying ||u|| < r̃ also W(q + u) ≤ 0. Because ||q|| = 1,q ∈ [−1, 1]n. Thus,

there exists a feasible solution to the Chebychev problem with r > 0.

A.2 Relationship of Chebychev center criterion to Granziera, Moon, and Schorfheide

(2018)

Relationship between sufficient conditions. We now state results from the literature in our notation,

whenever we have introduced the analogous notation before. In particular, we use θ ≡ (β,Σtr) to collect

the reduced form parameters, rather than ρ. We use W to denote the restrictions on the IRF, rather than

Φ′p, and we use nJ =
∑H

h=h Jh to refer to the number of restrictions, rather than r. We also use Q(H;θ)

to refer to the identified set over q, rather than F q.
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Corollary A.1 (Gordan’s Alternative, Corollary 14 in Border (2013)). Let W be an m × n matrix.

Exactly one of the following alternatives holds. Either there exists a x ∈ Rn satisfying Wx > 0 (with strict

inequality elementwise), or there exists a v ∈ Rm satisfying W′v = 0 with v ≥ 0 and v 6= 0.

Assumption 1 (Assumption 1, Granziera, Moon, and Schorfheide (2018)). There exists a compact reduced-

form parameter set R and an δ-inflated superset Rδ such that R ⊂ Rδ ⊂ R̄ and:

1. For every θ ∈ Rδ, there does not exist an nJ × 1 vector v ≥ 0,v 6= 0 such that W′v = 0.

2. . . .

Theorem A.1 (Theorem 1, Granziera, Moon, and Schorfheide (2018)). Suppose Assumption 1(i) is

satisfied. Then the admissible set AS(H;θ) is non-empty and not a singleton for all θ ∈ Rδ.

Granziera, Moon, and Schorfheide (2018) have a condition for a nonempty set that, in our notation

and conditional on a draw of reduced form parameters requires that there is no vector v ∈ Rnr such that

W′v = 0, with v ≥ 0,v 6= 0. Given Gordan’s Alternative (Border, 2013, Corollary 14), this condition

implies the existence of a vector z ∈ Rn such that Wz > 0, with strict equality elementwise. Take xc = z
||z||

as the Chebychev center, scaled to lie within the unit cube. Note that since Wxc > 0(= 0/||z||) holds

strictly, there is a non-degenerate open ball around xc such that the inequality restrictions also hold for

any x such that ||x− xc|| < r, r > 0. Thus, the assumption in their Theorem 1 implies the existence of a

non-degenerate Chebychev center.

Vice-versa, if a non-degenerate Chebychev center xc exists with r > 0, then all x
||x|| : ||x− xc|| ≤ r are

in the admissible set. Thus, the admissible set is non-empty and not a singleton.

Thus, our Proposition is equivalent to Theorem 1 in Granziera, Moon, and Schorfheide (2018), except

that we condition on a single parameter vector θ. However, a slightly stronger statement is possible.

Indeed, when the admissible set is empty, our proposition also implies that their Assumption 1 is violated

for a given θ.

If only a degenerate Chebychev center exists, then there exists an i such that e′iWxc = 0. Assume, by

contradiction, that there also exists a vector x such that e′jWx > 0∀j = 1, . . . , nJ . Then this (rescaled)

vector x̃ = x
||x|| would also be a Chebychev center. However, we could then construct a ball with strictly

positive radius around it where the inequalities still hold, a contradiction. Thus, there does not exist a x

such that Wx > 0 with strict inequality. Gordan’s Alternative then implies that there exists a v such that

W′v = 0 with v ≥ 0, z 6= 0.

A.3 Proposition A.1: Direct sampling from identified set Q with a single shock

Proposition A.1 (Direct draws from the admissible set.). If z ∼ N (0, In) and Wz ≤ 0, then q = z
||z|| is

a uniform draw from the unit n-sphere that satisfies Wq ≤ 0.

Proof. Let z̃ ∼ N (0, In) such that Wz̃ ≤ 0, where the inequality is elementwise. Let H be a given

orthonormal matrix. Thus, ζ̃ = Qz̃ ∼ N (0,QQ′) = N (0, In). Define g on Rn by g(z) = z
||z|| . Since
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||z|| =
√

(z′z), and H′H = I, it follows that g(Qz) = Qg(z). Let A be a Borel set on the σ-algebra on the

unit n-sphere. Then:

Prz̃ {g(z) ∈ A ∩ {z|Wz ≤ 0}}
Prz̃ {Wz ≤ 0}

=
Prz̃ {g(z) ∈ A ∩ {z|Wg(z) ≤ 0}}

Prz̃ {Wg(z) ≤ 0}

=
Prz̃ {g(ζ) ∈ A ∩ {ζ|Wg(ζ) ≤ 0}}

Prz̃ {Wg(ζ) ≤ 0}

=
PrHz̃ {Hg(z) ∈ A ∩ {Hz|WHg(z) ≤ 0}}

PrHz̃ {WHg(z) ≤ 0}

The first equality follows because ||z|| > 0 with probability one, the second equality follows because

z̃eta
D
= z̃, and the third equality follows from substituting z̃ = Qz̃. From above and using the definition

that q = g(z) and Hq = g(z) = Hg(z), we also have that:

Prz̃ {g(z) ∈ A ∩ {z|Wg(z) ≤ 0}}
Prz̃ {Wg(z) ≤ 0}

=
Prζ̃ {g(ζ) ∈ A ∩ {ζ|Wg(ζ) ≤ 0}}

Prζ̃ {Wg(ζ) ≤ 0}

⇔
Prq̃ {q ∈ A ∩ {q|Wq ≤ 0}}

Prq̃ {Wq ≤ 0}
=

PrHq̃ {Hq ∈ A ∩ {Hq|WHq ≤ 0}}
PrHq̃ {WHq ≤ 0}

Thus, the induced distribution is uniform on the truncated unit circle.

B Characterization of identified sets in small scale VARs

B.1 Proposition B.1 (Bivariate VAR(0) with heterogeneity restrictions)

We impose two restrictions to identify the first shock. In a bivariate VAR, we can use 2.3 to express these

restrictions as:

Standard sign restrictions Heterogeneity restrictions

(r0
a)1 ≥ 0 ⇔ q1Σtr

1,1 ≥ 0 (r0
a)1 ≥ 0 ⇔ q1Σtr

1,1 ≥ 0 (B.1a)

(r0
a)2 ≥ 0 ⇔ q1Σtr

2,1 + q2Σtr
2,2 ≥ 0 (r0

a)2 ≥ λ(r0
a)1 ⇔ (q1Σtr

2,1 + q2Σtr
2,2)− λq1Σtr

1,1 ≥ 0 (B.1b)

Since the heterogeneity restriction nests the standard sign restriction for λ = 0, we now focus on this more

general case.1

To analyze the implied restrictions, express the Cholesky factor Σtr in terms of the correlation and

variances of the reduced-form errors: The elements of the Cholesky decomposition Σ = Σtr(Σtr)′ are:

Σtr
1,1 =

√
Σ11, Σtr

2,1 = Σ21

Σtr
1,1

= Σtr
2,2

ρ√
1−ρ2

, Σtr
2,2 =

√
Σ22 − (Σtr

2,1)2 = |Σtr
2,1|
√

1/ρ2 − 1. Σ is the covariance

matrix of the forecast errors, and ρ is the reduced-form correlation between the forecast errors. We can

then rewrite (B.1) as:

1An example of a VAR with one sign and one heterogeneity restriction is identifying a cost shock in a competitive industry
with decreasing returns for which we observe prices and quantities. The restriction that demand is elastic translates to the
heterogeneity restriction that minus the quantities fall more than the prices within that industry.
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q1 ≥ 0 (B.2a)

q2 ≥

(
λ

Σtr
1,1

Σtr
2,2

−
Σtr

2,1

Σtr
2,2

)
q1 =

(
λ

Σtr
1,1

Σtr
2,2︸︷︷︸
>0

− ρ√
1− ρ2

)
q1. (B.2b)

In (q1, q2) space, q2 lies in the plane above the ray through the origin with slope − ρ√
1−ρ2

with λ = 0, i.e.,

with pure sign restrictions. The slope depends on correlation between the reduced-form forecast errors.

Heterogeneity restrictions can ensure a positive slope for λ large enough. Intersecting the set described by

(B.2) with the unit circle yields Figure 2.1, similar to Moon, Schorfheide, and Granziera (2013)

Proposition B.1 summarizes the results. Since Σtr
11 =

√
Σ11 and Σtr

21 = Σ21√
Σ11

, these restrictions depend

only on the reduced-form variances and covariances.

Proposition B.1 (Set reduction of IS (·) under heterogeneity restrictions in bivariate VAR). The identified

set for the structural impulse a1 from (B.1) is strictly smaller under heterogeneity restrictions than under

sign restrictions iff λΣtr
11 − Σtr

21 > 0. The identified set for a2 is strictly smaller unless λΣtr
11 = Σtr

21.

Proof. This proposition follows directly from comparing the sets listed below for λ = 0 and λ > 0. Recall

the restrictions:

a1 ≡ q1Σtr
11 ≥ 0

a2 ≡ q1Σtr
21 + q2Σtr

22 ≥ λq1Σtr
11

Trivially, the lower bound for a1 of zero is always within our set: a1 = 0.

Note that if the heterogeneity restriction binds with equality, we have that:

q1 =
Σtr

22√
(Σtr

22)2 + ((Σtr
21)2 − λΣtr

11)2
q2 = ± |Σtr

21 − λΣtr
11|√

(Σtr
22)2 + ((Σtr

21)2 − λΣtr
11)2

Case (a) Σtr
21 ≤ 0.

• Upper bound for a2: Since q1 ≥ 0, the upper bound for a2 is, trivially, ā2 = Σtr
22.

• Lower bound for a2: Since Σtr
22 > 0, the lower bound is attained by the largest q1 and the lowest

q2, i.e. with a binding heterogeneity restriction for q2 > 0. Then: the lower bound for a2 is

a2 =
λΣtr

11Σtr
22√

(Σtr
22)2+((Σtr

21)2−λ(Σtr
11)2

.

• Upper bound for a1: ā1 is also associated with the binding heterogeneity restriction: ā1 =
Σtr

22√
(Σtr

22)2+((Σtr
21)2−λ(Σtr

11)2
Σtr

11.

Case (b) λΣtr
11 − Σtr

21 ≤ 0,Σtr
21 ≥ 0.

• Upper bound for a2: a2 is now weakly positive, and the heterogeneity constraint is slack. The

SOC for the unique interior extremum to be a maximum always holds. At the interior extremum,

q1 =
Σtr

21√
(Σtr

22)2+(Σtr
21)2

and q2 =
Σtr

22

Σtr
21

q1. Thus: ā2 =
√

(Σtr
22)2 + (Σtr

21)2.

• Lower bound for a2: A negative q2 is now possible, but constrained by the heterogeneity

constraint, as its RHS is increasing faster in q1 than its LHS. Thus, the lower bound is associated

with a binding heterogeneity constraint and a2 =
λΣtr

11Σtr
22√

(Σtr
22)2+((Σtr

21)2−λΣtr
11)2

.
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• Upper bound for a1: Since q2 = 0,q1 = 1 is possible, the upper bound is simply ā1 = Σtr
11.

Case (c) λΣtr
11 − Σtr

21 ≥ 0,Σtr
21 ≥ 0 or 0 ≤ ρ ≤ λ

√
Σ11√
Σ22

.

• Upper bound for a2: We proceed by brute force, checking whether the heterogeneity constrained

is binding at the unconstrained maximum. We find that if λ ≤ (Σtr
22)2+(Σtr

21)2

Σtr
11Σtr

21
= Σ22

Σ21
, the

heterogeneity constraint is slack. Thus:

ā2 =


√

(Σtr
22)2 + (Σtr

21)2 λ ≤ (Σtr
22)2+(Σtr

21)2

Σtr
11Σtr

21
= Σ22

Σ21
= 1

ρ

√
Σ22√
Σ11

λΣtr
11Σtr

22√
(Σtr

22)2+((Σtr
21)2−λΣtr

11)2
λ ≥ (Σtr

22)2+(Σtr
21)2

Σtr
11Σtr

21
= Σ22

Σ21
= 1

ρ

√
Σ22√
Σ11

• Lower bound for a2: Since the interior extremum is always a maximum, we check the corners.

Comparing the two corners, we find:

a2 =


Σtr

22 λ ≥ 1
2

(Σtr
22)2+(Σtr

21)2

Σtr
11Σtr

21
= 1

2
Σ22
Σ21

= 1
2

1
ρ

√
Σ22√
Σ11

λΣtr
11Σtr

22√
(Σtr

22)2+((Σtr
21)2−λΣtr

11)2
λ ≤ 1

2
(Σtr

22)2+(Σtr
21)2

Σtr
11Σtr

21
= 1

2
Σ22
Σ21

= 1
2

1
ρ

√
Σ22√
Σ11

• Upper bound for a1: ā1 is also associated with the binding heterogeneity restriction:

ā1 =
Σtr

22√
(Σtr

22)2 + ((Σtr
21)2 − λΣtr

11)2
Σtr

11.

Intuitively, we find set reductions with sign restrictions if the reduced-form correlation between the

variables is of the opposite sign than the one attributed to the identified shock: In this case, the identified

shock cannot account for the entire impact response or else the VAR could not generate the observed

reduced-form correlation. This intuition also applies to the case of heterogeneity restrictions, with the

reduced-form correlation between the linear combinations [1, 0]yt and [−λ, 1]yt replacing the correlation

between variables 1 and 2.

B.2 Proposition B.2 (Trivariate VAR(0) with heterogeneity restrictions)

We now analyze when heterogeneity restrictions sharpen inference on variables that we do not directly

restrict in the trivariate case. We show that there is a set of sufficient conditions that parallel the necessary

and sufficient conditions of the bivariate case. These sufficient conditions also imply either equal-sized sets

or a strict set reductions for the variable that is not involved in the heterogeneity restrictions.

We begin by stating the heterogeneity restriction for the trivariate case; to obtain the sign restrictions,

set λ = 0. In the Appendix, we allow for restrictions of different signs.

(r0
a)1 ≥ 0 ⇔ q1Σtr

11 ≥ 0 (B.3a)

(r0
a)2 ≥ 0 ⇔ q1Σtr

21 + q2Σtr
22 ≥ 0 (B.3b)

(r0
a)3 ≥ λ(r0

a)2 ⇔ q1Σtr
31 + q2Σtr

32 + q3Σtr
33 ≥ λ(q1Σtr

21 + q2Σtr
22) (B.3c)
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Proposition B.2 (Set reduction of IS (·) under heterogeneity restrictions in trivariate VAR). The identified

set for the structural impulse a1 from (B.3) is strictly smaller under heterogeneity restrictions than under

sign restrictions if λΣtr
21 > Σtr

31 and Σtr
31 > 0. The identified set for a1 is equal under heterogeneity and sign

restrictions if λΣtr
21 ≤ Σtr

31 and Σtr
21 > 0.

Proof. The proposition follows from comparing the different cases below. Identified set Here we only

consider bounds for a1. We seek a solution to the following problem:

min
q

or max
q

Σtr
11q1 (B.4a)

s.t. ||q|| = 1 (B.4b)

Σtr
11q1 ≥ 0 (B.4c)

Σtr
21q1 + Σtr

22q2 ≥ 0

(Σtr
31 − λΣtr

21)︸ ︷︷ ︸
≡(Σtr

31)λ

q1 + (Σtr
32 − λΣtr

22)︸ ︷︷ ︸
≡(Σtr

32)λ

q2 + Σtr
33q3 ≥ 0 (B.4d)

Since Σtr
ii > 0∀i, we can write equivalently:

min
q

or max
q

√
1− (q2)2 − (q3)3

s.t. Σtr
21

√
1− (q2)2 − (q3)3 + Σtr

22q2 ≥ 0

(Σtr
31 − λΣtr

21)︸ ︷︷ ︸
≡(Σtr

31)λ

√
1− (q2)2 − (q3)3 + (Σtr

32 − λΣtr
22)︸ ︷︷ ︸

≡(Σtr
32)λ

q2 + Σtr
33q3 ≥ 0

Note that a1 = 0 is always feasible by setting q3 = 1. We therefore focus on the maximization problem.

Using Lagrange multipliers νSR and νHR to denote the inequality constraints we can equivalently write

the Lagrangian as

min
νSR,νHR

max
q2,q3

L =
√

1− (q2)2 − (q3)3 − νSR(Σtr
21

√
1− (q2)2 − (q3)3 + Σtr

22q2)

− νHR((Σtr
31)λ

√
1− (q2)2 − (q3)3 + (Σtr

32)λq2 + Σtr
33q3)

with the associated Kuhn-Tucker conditions as:

[q2]− q2√
1− (q2)2 − (q3)3

(1− νSRΣtr
21 − νHR(Σtr,λ

31 )) = νSRΣtr
22 + νHRΣtr,λ

32

νSR(Σtr
21

√
1− (q2)2 − (q3)3 + Σtr

22q2) = 0

νSR ≥ 0

[νSR]Σtr
21

√
1− (q2)2 − (q3)3 + Σtr

22q2 ≥ 0.

[q3]− q3√
1− (q2)2 − (q3)3

(1− νSRΣtr
21 − νHR(Σtr

31)λ) = νHRΣtr
33

νHR(Σtr,λ
21

√
1− (q2)2 − (q3)3 + (Σtr

22)λq2 + Σtr
33q3) = 0

νHR ≥ 0

[νHR](Σtr
31)λ

√
1− (q2)2 − (q3)3 + (Σtr

32)λq2 + Σtr
33q3 ≥ 0.
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Clearly, the Kuhn-Tucker conditions show that the unconstrained optimum, when the multipliers νSR, νHR

are zero, involves setting q2 = q3 = 0.

We assume throughout that λ ≥ 0. For λ = 0, the heterogeneity restrictions become standard sign

restrictions. We focus on the case of Σtr
21,Σ

tr
31 > 0.

1. All (conditional) covariances positive, heterogeneity restriction weak:

Note that when 0 ≤ Σtr
21,Σ

tr
31 and λΣtr

21 ≤ Σtr
31, then Σtr,λ

31 ≥ 0 and q2 = q3 = νSR = νHR = 0 is a

local extremum – specifically, an optimum. All conditions are trivially satisfied at zero. This equals

the unconstrained optimum.

2. All (conditional) covariances positive, heterogeneity restriction strong:

Note that when λΣtr
21 > Σtr

31 > 0, then Σtr,λ
31 < 0. q2 = q3 = νSR = νHR = 0 no longer satisfies the

optimality conditions with λ > 0, since the HR constraint is violated at this candidate point. With

λ = 0, however, q2 = q3 = 0 is feasible, and the unconstrained maximum attains. The bound on q1

is thus strictly tighter with heterogeneity restrictions.

3. Small negative conditional covariance, weak heterogeneity restriction:

When Σtr
31 < 0, it follows that Σtr,λ

31 < 0 for all λ. For λ,A31 close enough to zero, the optimum

involves νHR > 0 = νSR. In this case, the solution is given by:

qHR1 =
(Σtr,λ

32 )2 + (Σtr
33)2√

((Σtr,λ
32 )2 + (Σtr

33)2)2 + Σtr
33(Σtr,λ

31 )2(1 + (Σtr,λ
32 /Σtr

33)2)

It can be shown that
dqHR1
dλ

∣∣∣
λ=0

< 0: Introducing heterogeneity restrictions tightens the upper bound.

More generally, both restrictions or only the second restriction can bind if the optimum involves

q2 < 0. The solution for q1 is q1 = max{qHR1 ,qHR,SR1 ,qSR1 } where:

qHR,SR1 =
Σtr

33√
((Σtr

31 − (Σtr
21/Σ

tr
22)Σtr

32)2 + (Σtr
33)2)2 + (Σtr

33)2(1 + (Σtr
21/Σ

tr
22)2)

qSR1 =
1√

1 + (Σtr
21/Σ

tr
22)2

.

The intuition from Proposition B.1 also explains Proposition B.2: Consider a case in which shock

identification calls for positive comovements between the variables. The sufficient condition applies to the

case in which the reduced-form correlations are the same as the correlations conditional on the shock. The

heterogeneity restriction strictly sharpens inference if, in the space of transformed variables, the conditional

correlation has the opposite sign of the reduced-form correlation.

Proposition B.2 implies that heterogeneity restrictions can also sharpen the inference on standard macro

variables, say variable 1, even if the heterogeneity restrictions only involve micro variables 2 and 3. Again,

since Σtr
1i = Σ1i√

Σ11
, these conditions involve only the reduced-form covariances between the forecast errors.2

2The same logic generalizes to the case of a n dimensional VAR in which Σ1i > 0 for i = 1, . . . , n with up to n−3 positivity
restrictions on the extra variables appended to (B.3).
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B.3 Proposition B.3 (Bivariate VAR(1) with slope restrictions)

We now discuss slope restrictions as another type of ranking restrictions. Unlike heterogeneity restrictions

which may replace standard sign restrictions, we impose this restriction in addition to the standard sign

restrictions.

To consider slope restrictions, we have to introduce dynamics. We do so in the simplest case possible,

a bivariate VAR(1):

yt = Byt−1 + Aεt, A = Σtr[q,q⊥].

We analyze three sign restrictions and one ranking restriction. For λ = 1, the ranking restriction

requires the response of the second variable to the identified shock to increase initially.

[SR1] (r0
a)1 > 0 ⇔ e1Σ

trq > 0

[SR2] (r0
a)2 > 0 ⇔ e2Σ

trq > 0

[SR3] (r1
a)2 > 0 ⇔ e2BΣtrq > 0

[RR] (r1
a)2 > λ(r0

a)2 ⇔ e2BΣtrq > λ× e2Σ
trq

The question whether slope restrictions sharpen inference is only meaningful when the identified set Q is

nonempty absent slope restrictions. The crux is SR3. It can be satisfied if the second variable is persistent

(B22 > 0) or if tends to oscillate (B22 < 0), but there is positive feedback (B21 > 0). Below, we assume

either condition holds and λ > 0.

Proposition B.3 (Set reduction with slope restrictions). If B22 > 0, the slope restriction binds if B21 < 0.

If B22 < λ, this implies that the identified set for a1 is strictly smaller with the slope restriction. If B22 < 0

and B21 > 0, the identified set for a1 is also strictly smaller with slope restrictions.

Proof. To arrive at these different cases, first multiply out the matrices and vectors to rewrite the restrictions

as:

[SR1] Σtr
11q1 ≥ 0 ⇒ q1 ≥ 0.

[SR2] Σtr
21q1 + Σtr

22q2 ≥ 0 ⇒ q2 ≥ −
Σtr

21

Σtr
22

q1.

[SR3] (b22Σtr
21 + b21Σtr

11)q1 + b22Σtr
22q2 ≥ 0. ⇒ q2

≥ −
Σtr

21

Σtr
22
q1 − b21

b22

Σtr
11

Σtr
22
q1 b22 > 0

≤ −Σtr
21

Σtr
22
q1 − b21

b22

Σtr
11

Σtr
22
q1 b22 < 0.

[RR] ((b22 − λ)Σtr
21 + b21Σtr

11)q1 + (b22 − λ)Σtr
22q2 ≥ 0. ⇒ q2

≥ −
Σtr

21

Σtr
22
q1 − b21

b22−λ
Σtr

11

Σtr
22
q1 b22 > λ

≤ −Σtr
21

Σtr
22
q1 − b21

b22−λ
Σtr

11

Σtr
22
q1 b22 < λ.

As Figure B.1 shows, comparing the different cases yields:

• If B22 > λ > 0 and B21 < 0, then there is a strict set reduction for q2 because the lower bound on

q2 increases. This leads to a strict set reduction in the identified set for the impact response a1 if

Σtr
2,1 < 0 or 0 ≤ Σtr

21

Σtr
22
q1 <

−B21
B22−λ

Σtr
11

Σtr
22

.
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• If B22 > λ > 0 and B21 > 0, there is no set reduction because [RR] is less restrictive than [SR2].

• If 0 ≤ B22 < λ and B21 < 0, the identified set is empty because the [RR] upper bound lies below the

[SR2] lower bound.

• If 0 ≤ B22 < λ and B21 > 0 then there is a strict set reduction for q2 because there is an upper bound

for q2 – and the identified set is non-empty because the upper bound lies above the lower bound

implied by [SR2]. By bounding q2 from above, this case always bounds q1 from below and thus leads

to a strict set reduction for q1 and thus for the identified set for the impact response a1.

• If B22, B21 < 0, then the ranking restriction is always slack. If Σtr
21 > 0, the identified set is empty

already because [SR2] and [SR3] are incompatible.

The ranking restriction binds if there is negative feedback between the two variables but persistence

(or a tendency to oscillate and positive feedback). Since we require both impulse-responses to increase

on impact, the negative feedback limits at least one of the two impulse-responses. The negative feedback

from the first variable by itself depresses the response of the second variable over time. When B22 < λ,

the persistence is weak enough relative to the feedback effect that the restriction shrinks the identified set

for q1 and thus the identified set for the impulse-response of the first variable. Figure B.1 illustrates the

identified set Q.
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(a) Diagonal element dominates B22 > λ, implying persistence B22 > 0
(a1) B21 < 0,Σtr

2,1 ≥ 0 (a2) B21 > 0,Σtr
2,1 ≥ 0 (a3) B21 < 0,Σtr

2,1 ≤ 0 (a4) B21 > 0,Σtr
2,1 ≤ 0

Ranking restriction binds Slack ranking restriction Ranking restriction binds Slack ranking restriction
Positive correlation Positive correlation Negative correlation Negative correlation

q1

q2

SR2 SR3

RR

q1

q2

SR2
SR3

RR

q1

q2

SR2

SR3

RR

q1

q2
SR2

SR3
RR

Same identified set a1 Same identified set a1 Smaller identified set a1 Same identified set a1

(b) Diagonal element dominated B22 < λ and persistence B22 > 0
(b1) B21 < 0,Σtr

2,1 ≥ 0 (b2) B21 > 0,Σtr
2,1 ≥ 0 (b3) B21 < 0,Σtr

2,1 ≤ 0 (b4) B21 > 0,Σtr
2,1 ≤ 0

Ranking restriction binds Empty identified set Ranking restriction binds Empty identified set
Positive correlation Positive correlation Negative correlation Negative correlation

q1

q2

SR2 SR3

RR

q1

q2

SR2
SR3

RR

q1

q2

SR2

SR3

RR

q1

q2
SR2

SR3
RR

Smaller identified set a1 Empty identified set Smaller identified set a1 Empty identified set

(c) Diagonal element dominated B22 < λ and mean reversion B22 < 0
(c1) B21 < 0,Σtr

2,1 ≥ 0 (c2) B21 > 0,Σtr
2,1 ≥ 0 (c3) B21 < 0,Σtr

2,1 ≤ 0 (c4) B21 > 0,Σtr
2,1 ≤ 0

Empty identified set Slack ranking restriction Empty identified set Slack ranking restriction
Positive correlation Positive correlation Negative correlation Negative correlation

q1

q2

SR2SR3

q1

q2

SR2

SR3

RR

q1

q2

SR2

SR3

q1

q2

SR2

SR3 RR

Empty set to begin with Smaller identified sets a1 Empty set to begin with Smaller identified sets a1

Figure B.1: Identified sets for q1, q2 with slope and sign restrictions.
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C Forecast error variance decomposition

The total forecast error variance (FEV) for yt+H given information up to time t is given by:

FEVH =
H∑
h=0

((Bh
XΣtr)(Bh

XΣtr)′).

We can decompose the FEV into the contribution due to an identified shock with impulse-vector Σtrq. We

call this the conditional forecast error variance (CFEV):

CFEVH(q) =
H∑
h=0

((Bh
XΣtrq)(Bh

XΣtrq)′).

Let CFEVi,H(q) by the (i, i)th element of the CFEV. As shown by Uhlig (2003), we can rewrite the

cumulative conditional forecast error variance from horizon H to H̄, CFEVi,H,H̄(q), as:

CFEVi,H,H̄(q) =

H̄∑
h=H

h∑
k=0

((Bk
XΣtrq)(Bk

XΣtrq)′)(ii) = q′Si,H,H̄q, (C.1)

Si,H,H̄ ≡
H̄∑
h=0

(H̄ + 1−max{H,h})(eiBh
XΣtr)′(eiB

h
XΣtr). (C.2)

We can compute the upper and lower bound on CFEVi,H simply by replacing the objective function

algorithm in Section 4 by q′Si,H,Hq and keeping the same set of constraints.

To interpret the FEV explained by the identified shock, we normalize CFEVi,H(q) by the total FEV

for variable i up to horizon H.
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D Data and empirical results

D.1 VAR with heterogeneity restrictions and micro data

We use the following macro variables:

• The average of business sector GDP and GDI: BEA via Fernald (2014) (accumulated growth rates)

• Consumer confidence CSCICP03USM665S from the St. Louis Fed FRED website

• PCE price index PCEPI from the St. Louis Fed FRED website

• Utilization adjusted TFP: Fernald (2014) (accumulated growth rates)

• Business sector hours worked: BLS via Fernald (2014) (accumulated growth rates)

All variables enter the VAR in log-levels.

We use industry data from Ken French’s data library, based on Fama and French (1997): See http:

//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. Specifically, we use the

FF5 industry returns and convert them to real ex post returns using the change in the log of the PCE

price index.

To compute industry R&D intensities, we use Compustat data. We drop all firms not headquartered in

the U.S. and all observations with negative sales or assets. For each year, we winsorize the data at the 1st

and 99th percentiles, although our results do not depend on this. We then compute the R&D intensity as

the ratio of the three-month moving average of R&D expenditures xrd relative to the three-year moving

average of operating income before depreciation oibdp, net sales sales, or total assets at. We tabulate

the data pooling firm-calendar year observations and drop observations with multiple fiscal years in a given

calendar year.

Application 1: Industry data and heterogeneity restrictions
Variable Level Impact 2 years 6 years Min Median Max

Output 98 13.5 30.7 29.5 10.4 29.0 35.2
90 13.6 35.4 25.8 13.6 29.9 36.5
68 16.8 39.2 31.9 16.3 35.7 42.2

TFP 98 12.4 20.8 24.0 11.2 24.3 27.1
90 12.1 23.5 31.1 12.1 27.7 31.4
68 13.0 27.0 37.3 13.0 30.6 38.4

Confidence 98 14.0 33.6 27.4 14.0 23.2 37.2
90 14.0 36.3 28.7 14.0 28.7 39.1
68 15.4 39.1 29.9 15.4 29.9 42.1

Employment 98 12.3 32.8 26.7 12.2 28.5 38.7
90 13.0 35.4 24.6 13.0 29.1 37.9
68 16.0 38.4 27.6 15.0 30.7 42.1

Table D.1: Reduction of prior-robust credible set for macro variables in the nine variable VAR with ranking
restrictions
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Figure D.1: Raw data: News application with five Fama-French industries
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Figure D.2: Comparing shortest and equal-tailed prior-robust credible sets
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Heterogeneity restrictions lead to both a reduction in the identified set, here integrated over all reduced-form parameters, and

the dispersion of the fully Bayesian responses, shown as density plots two years after impact. Heterogeneity restrictions lead

to less dispersed distributions of responses and for TFP shift mass away from zero.

Figure D.3: Distribution of the two-year-responses of macro variables to a one standard deviation
productivity news shock.
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Figure D.4: Posterior plausibility of heterogeneity restrictions as a function of the intensity parameter λ
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Figure D.5: Fully Bayesian responses of TFP with the actual ranking restrictions and reversed ranking
restrictions.
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D.2 VAR with slope restrictions and only macro data

We use the following macro variables:

• The average of business sector GDP and GDI: BEA via Fernald (2014) (accumulated growth rates).

• Utilization adjusted TFP: Fernald (2014) (accumulated growth rates).

• The real SP500 index from Robert Shiller’s website http://www.econ.yale.edu/~shiller/data.

htm.

• CPI price index from Robert Shiller’s website http://www.econ.yale.edu/~shiller/data.htm.

• The 2-year Treasury constant maturity rate GS2 from the St. Louis Fed FRED website.
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Figure D.6: Raw data: 5-variable VAR news shock application
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Application 2: Macro data and slope restrictions
Variable Level Impact 2 years 6 years Min Median Max

Output 98 9.5 19.9 14.4 4.2 18.5 22.7
90 14.6 22.9 27.3 7.9 23.0 28.6
68 18.2 33.6 28.7 12.8 32.4 34.2

TFP 98 10.6 11.8 25.1 0.4 15.2 25.1
90 11.3 18.2 27.4 1.4 23.9 28.5
68 20.3 21.8 34.2 5.7 32.9 36.7

Stocks 98 24.3 17.5 -0.2 -0.2 11.4 24.3
90 29.8 17.1 17.9 9.9 16.6 29.8
68 38.7 26.0 24.4 15.9 24.6 38.7

FFR 98 7.3 12.8 11.7 4.8 12.8 18.3
90 10.4 20.1 18.2 10.4 16.9 26.5
68 16.6 23.8 25.1 16.6 22.7 30.8

Prices 98 14.0 12.5 21.4 9.6 19.5 28.8
90 25.4 22.9 20.7 19.5 24.4 30.9
68 36.4 29.4 25.4 25.4 30.1 38.9

Table D.2: Reduction of prior-robust credible set for macro variables in the five-variable VAR with slope
restrictions
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